Loading…

PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse

The classification of clinical samples based on gene expression data is an important part of precision medicine. In this manuscript, we show how transforming gene expression data into a set of personalized (sample-specific) networks can allow us to harness existing graph-based methods to improve cla...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on computational biology and bioinformatics 2021-11, Vol.18 (6), p.2841-2847
Main Authors: Nguyen, Thin, Lee, Samuel C., Quinn, Thomas P., Truong, Buu, Li, Xiaomei, Tran, Truyen, Venkatesh, Svetha, Le, Thuc Duy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-bb31c81c935313a780b8e3c88f33420aaf22c4f9d486d878a43d4eaa0f97ce2d3
cites cdi_FETCH-LOGICAL-c392t-bb31c81c935313a780b8e3c88f33420aaf22c4f9d486d878a43d4eaa0f97ce2d3
container_end_page 2847
container_issue 6
container_start_page 2841
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 18
creator Nguyen, Thin
Lee, Samuel C.
Quinn, Thomas P.
Truong, Buu
Li, Xiaomei
Tran, Truyen
Venkatesh, Svetha
Le, Thuc Duy
description The classification of clinical samples based on gene expression data is an important part of precision medicine. In this manuscript, we show how transforming gene expression data into a set of personalized (sample-specific) networks can allow us to harness existing graph-based methods to improve classifier performance. Existing approaches to personalized gene networks have the limitation that they depend on other samples in the data and must get re-computed whenever a new sample is introduced. Here, we propose a novel method, called Personalized Annotation-based Networks (PAN), that avoids this limitation by using curated annotation databases to transform gene expression data into a graph. Unlike competing methods, PANs are calculated for each sample independent of the population, making it a more efficient way to obtain single-sample networks. Using three breast cancer datasets as a case study, we show that PAN classifiers not only predict cancer relapse better than gene features alone, but also outperform PPI (protein-protein interactions) and population-level graph-based classifiers. This work demonstrates the practical advantages of graph-based classification for high-dimensional genomic data, while offering a new approach to making sample-specific networks. Supplementary information: PAN and the baselines are implemented in Python. Source code and data are available at https://github.com/thinng/PAN .
doi_str_mv 10.1109/TCBB.2021.3076422
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2519805193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9417708</ieee_id><sourcerecordid>2607892928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-bb31c81c935313a780b8e3c88f33420aaf22c4f9d486d878a43d4eaa0f97ce2d3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbK3-ABFkwYuX1H0l2fXWBF9QapGKx7DdTDA1zdbdBNFfb0JrD15mhplvBuZD6JySMaVE3SzSJBkzwuiYkzgSjB2gIQ3DOFAqEod9LcIgVBEfoBPvV4QwoYg4RgPOFVFhpIbobT6Z3eI5OG9rXZU_kONJXdtGN6Wtg0T7rjGD5su6D48L63DzDnjuIC9NT2Bb4MSB9g1OdW3A4Reo9MbDKToqdOXhbJdH6PX-bpE-BtPnh6d0Mg0MV6wJlktOjaRG8ZBTrmNJlhK4kbLgXDCidcGYEYXKhYxyGUsteC5Aa1Ko2ADL-Qhdb-9unP1swTfZuvQGqkrXYFufsZAqSbrAO_TqH7qyreu-7qiIxFIxxWRH0S1lnPXeQZFtXLnW7jujJOutZ731rLee7ax3O5e7y-1yDfl-409zB1xsgRIA9mMlaBwTyX8B9A2Etg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607892928</pqid></control><display><type>article</type><title>PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Nguyen, Thin ; Lee, Samuel C. ; Quinn, Thomas P. ; Truong, Buu ; Li, Xiaomei ; Tran, Truyen ; Venkatesh, Svetha ; Le, Thuc Duy</creator><creatorcontrib>Nguyen, Thin ; Lee, Samuel C. ; Quinn, Thomas P. ; Truong, Buu ; Li, Xiaomei ; Tran, Truyen ; Venkatesh, Svetha ; Le, Thuc Duy</creatorcontrib><description>The classification of clinical samples based on gene expression data is an important part of precision medicine. In this manuscript, we show how transforming gene expression data into a set of personalized (sample-specific) networks can allow us to harness existing graph-based methods to improve classifier performance. Existing approaches to personalized gene networks have the limitation that they depend on other samples in the data and must get re-computed whenever a new sample is introduced. Here, we propose a novel method, called Personalized Annotation-based Networks (PAN), that avoids this limitation by using curated annotation databases to transform gene expression data into a graph. Unlike competing methods, PANs are calculated for each sample independent of the population, making it a more efficient way to obtain single-sample networks. Using three breast cancer datasets as a case study, we show that PAN classifiers not only predict cancer relapse better than gene features alone, but also outperform PPI (protein-protein interactions) and population-level graph-based classifiers. This work demonstrates the practical advantages of graph-based classification for high-dimensional genomic data, while offering a new approach to making sample-specific networks. Supplementary information: PAN and the baselines are implemented in Python. Source code and data are available at https://github.com/thinng/PAN .</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2021.3076422</identifier><identifier>PMID: 33909569</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; annotation-based networks ; Annotations ; Breast cancer ; Breast Neoplasms - diagnosis ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Classification ; Classifiers ; Customization ; Databases, Genetic ; Female ; Gene expression ; Genomics ; Genomics - methods ; Humans ; Molecular Sequence Annotation - methods ; Neoplasm Recurrence, Local - diagnosis ; Neoplasm Recurrence, Local - genetics ; Neoplasm Recurrence, Local - metabolism ; Neoplasm Recurrence, Local - pathology ; Networks ; Ontologies ; Personalized medicine ; Precision medicine ; Precision Medicine - methods ; Protein interaction ; Protein Interaction Maps - genetics ; Proteins ; Sociology ; Software ; Source code ; Transcriptome - genetics</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2021-11, Vol.18 (6), p.2841-2847</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-bb31c81c935313a780b8e3c88f33420aaf22c4f9d486d878a43d4eaa0f97ce2d3</citedby><cites>FETCH-LOGICAL-c392t-bb31c81c935313a780b8e3c88f33420aaf22c4f9d486d878a43d4eaa0f97ce2d3</cites><orcidid>0000-0002-9732-4313 ; 0000-0003-3467-8963 ; 0000-0001-6531-8907 ; 0000-0001-8675-6631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9417708$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33909569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Thin</creatorcontrib><creatorcontrib>Lee, Samuel C.</creatorcontrib><creatorcontrib>Quinn, Thomas P.</creatorcontrib><creatorcontrib>Truong, Buu</creatorcontrib><creatorcontrib>Li, Xiaomei</creatorcontrib><creatorcontrib>Tran, Truyen</creatorcontrib><creatorcontrib>Venkatesh, Svetha</creatorcontrib><creatorcontrib>Le, Thuc Duy</creatorcontrib><title>PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>The classification of clinical samples based on gene expression data is an important part of precision medicine. In this manuscript, we show how transforming gene expression data into a set of personalized (sample-specific) networks can allow us to harness existing graph-based methods to improve classifier performance. Existing approaches to personalized gene networks have the limitation that they depend on other samples in the data and must get re-computed whenever a new sample is introduced. Here, we propose a novel method, called Personalized Annotation-based Networks (PAN), that avoids this limitation by using curated annotation databases to transform gene expression data into a graph. Unlike competing methods, PANs are calculated for each sample independent of the population, making it a more efficient way to obtain single-sample networks. Using three breast cancer datasets as a case study, we show that PAN classifiers not only predict cancer relapse better than gene features alone, but also outperform PPI (protein-protein interactions) and population-level graph-based classifiers. This work demonstrates the practical advantages of graph-based classification for high-dimensional genomic data, while offering a new approach to making sample-specific networks. Supplementary information: PAN and the baselines are implemented in Python. Source code and data are available at https://github.com/thinng/PAN .</description><subject>Algorithms</subject><subject>annotation-based networks</subject><subject>Annotations</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Customization</subject><subject>Databases, Genetic</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Molecular Sequence Annotation - methods</subject><subject>Neoplasm Recurrence, Local - diagnosis</subject><subject>Neoplasm Recurrence, Local - genetics</subject><subject>Neoplasm Recurrence, Local - metabolism</subject><subject>Neoplasm Recurrence, Local - pathology</subject><subject>Networks</subject><subject>Ontologies</subject><subject>Personalized medicine</subject><subject>Precision medicine</subject><subject>Precision Medicine - methods</subject><subject>Protein interaction</subject><subject>Protein Interaction Maps - genetics</subject><subject>Proteins</subject><subject>Sociology</subject><subject>Software</subject><subject>Source code</subject><subject>Transcriptome - genetics</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AQgBdRbK3-ABFkwYuX1H0l2fXWBF9QapGKx7DdTDA1zdbdBNFfb0JrD15mhplvBuZD6JySMaVE3SzSJBkzwuiYkzgSjB2gIQ3DOFAqEod9LcIgVBEfoBPvV4QwoYg4RgPOFVFhpIbobT6Z3eI5OG9rXZU_kONJXdtGN6Wtg0T7rjGD5su6D48L63DzDnjuIC9NT2Bb4MSB9g1OdW3A4Reo9MbDKToqdOXhbJdH6PX-bpE-BtPnh6d0Mg0MV6wJlktOjaRG8ZBTrmNJlhK4kbLgXDCidcGYEYXKhYxyGUsteC5Aa1Ko2ADL-Qhdb-9unP1swTfZuvQGqkrXYFufsZAqSbrAO_TqH7qyreu-7qiIxFIxxWRH0S1lnPXeQZFtXLnW7jujJOutZ731rLee7ax3O5e7y-1yDfl-409zB1xsgRIA9mMlaBwTyX8B9A2Etg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Nguyen, Thin</creator><creator>Lee, Samuel C.</creator><creator>Quinn, Thomas P.</creator><creator>Truong, Buu</creator><creator>Li, Xiaomei</creator><creator>Tran, Truyen</creator><creator>Venkatesh, Svetha</creator><creator>Le, Thuc Duy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9732-4313</orcidid><orcidid>https://orcid.org/0000-0003-3467-8963</orcidid><orcidid>https://orcid.org/0000-0001-6531-8907</orcidid><orcidid>https://orcid.org/0000-0001-8675-6631</orcidid></search><sort><creationdate>20211101</creationdate><title>PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse</title><author>Nguyen, Thin ; Lee, Samuel C. ; Quinn, Thomas P. ; Truong, Buu ; Li, Xiaomei ; Tran, Truyen ; Venkatesh, Svetha ; Le, Thuc Duy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-bb31c81c935313a780b8e3c88f33420aaf22c4f9d486d878a43d4eaa0f97ce2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>annotation-based networks</topic><topic>Annotations</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Customization</topic><topic>Databases, Genetic</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Molecular Sequence Annotation - methods</topic><topic>Neoplasm Recurrence, Local - diagnosis</topic><topic>Neoplasm Recurrence, Local - genetics</topic><topic>Neoplasm Recurrence, Local - metabolism</topic><topic>Neoplasm Recurrence, Local - pathology</topic><topic>Networks</topic><topic>Ontologies</topic><topic>Personalized medicine</topic><topic>Precision medicine</topic><topic>Precision Medicine - methods</topic><topic>Protein interaction</topic><topic>Protein Interaction Maps - genetics</topic><topic>Proteins</topic><topic>Sociology</topic><topic>Software</topic><topic>Source code</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Thin</creatorcontrib><creatorcontrib>Lee, Samuel C.</creatorcontrib><creatorcontrib>Quinn, Thomas P.</creatorcontrib><creatorcontrib>Truong, Buu</creatorcontrib><creatorcontrib>Li, Xiaomei</creatorcontrib><creatorcontrib>Tran, Truyen</creatorcontrib><creatorcontrib>Venkatesh, Svetha</creatorcontrib><creatorcontrib>Le, Thuc Duy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Thin</au><au>Lee, Samuel C.</au><au>Quinn, Thomas P.</au><au>Truong, Buu</au><au>Li, Xiaomei</au><au>Tran, Truyen</au><au>Venkatesh, Svetha</au><au>Le, Thuc Duy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>18</volume><issue>6</issue><spage>2841</spage><epage>2847</epage><pages>2841-2847</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>The classification of clinical samples based on gene expression data is an important part of precision medicine. In this manuscript, we show how transforming gene expression data into a set of personalized (sample-specific) networks can allow us to harness existing graph-based methods to improve classifier performance. Existing approaches to personalized gene networks have the limitation that they depend on other samples in the data and must get re-computed whenever a new sample is introduced. Here, we propose a novel method, called Personalized Annotation-based Networks (PAN), that avoids this limitation by using curated annotation databases to transform gene expression data into a graph. Unlike competing methods, PANs are calculated for each sample independent of the population, making it a more efficient way to obtain single-sample networks. Using three breast cancer datasets as a case study, we show that PAN classifiers not only predict cancer relapse better than gene features alone, but also outperform PPI (protein-protein interactions) and population-level graph-based classifiers. This work demonstrates the practical advantages of graph-based classification for high-dimensional genomic data, while offering a new approach to making sample-specific networks. Supplementary information: PAN and the baselines are implemented in Python. Source code and data are available at https://github.com/thinng/PAN .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33909569</pmid><doi>10.1109/TCBB.2021.3076422</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9732-4313</orcidid><orcidid>https://orcid.org/0000-0003-3467-8963</orcidid><orcidid>https://orcid.org/0000-0001-6531-8907</orcidid><orcidid>https://orcid.org/0000-0001-8675-6631</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2021-11, Vol.18 (6), p.2841-2847
issn 1545-5963
1557-9964
language eng
recordid cdi_proquest_miscellaneous_2519805193
source IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Algorithms
annotation-based networks
Annotations
Breast cancer
Breast Neoplasms - diagnosis
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Classification
Classifiers
Customization
Databases, Genetic
Female
Gene expression
Genomics
Genomics - methods
Humans
Molecular Sequence Annotation - methods
Neoplasm Recurrence, Local - diagnosis
Neoplasm Recurrence, Local - genetics
Neoplasm Recurrence, Local - metabolism
Neoplasm Recurrence, Local - pathology
Networks
Ontologies
Personalized medicine
Precision medicine
Precision Medicine - methods
Protein interaction
Protein Interaction Maps - genetics
Proteins
Sociology
Software
Source code
Transcriptome - genetics
title PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T15%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PAN:%20Personalized%20Annotation-Based%20Networks%20for%20the%20Prediction%20of%20Breast%20Cancer%20Relapse&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Nguyen,%20Thin&rft.date=2021-11-01&rft.volume=18&rft.issue=6&rft.spage=2841&rft.epage=2847&rft.pages=2841-2847&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2021.3076422&rft_dat=%3Cproquest_cross%3E2607892928%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-bb31c81c935313a780b8e3c88f33420aaf22c4f9d486d878a43d4eaa0f97ce2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607892928&rft_id=info:pmid/33909569&rft_ieee_id=9417708&rfr_iscdi=true