Loading…
PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse
The classification of clinical samples based on gene expression data is an important part of precision medicine. In this manuscript, we show how transforming gene expression data into a set of personalized (sample-specific) networks can allow us to harness existing graph-based methods to improve cla...
Saved in:
Published in: | IEEE/ACM transactions on computational biology and bioinformatics 2021-11, Vol.18 (6), p.2841-2847 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-bb31c81c935313a780b8e3c88f33420aaf22c4f9d486d878a43d4eaa0f97ce2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-bb31c81c935313a780b8e3c88f33420aaf22c4f9d486d878a43d4eaa0f97ce2d3 |
container_end_page | 2847 |
container_issue | 6 |
container_start_page | 2841 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 18 |
creator | Nguyen, Thin Lee, Samuel C. Quinn, Thomas P. Truong, Buu Li, Xiaomei Tran, Truyen Venkatesh, Svetha Le, Thuc Duy |
description | The classification of clinical samples based on gene expression data is an important part of precision medicine. In this manuscript, we show how transforming gene expression data into a set of personalized (sample-specific) networks can allow us to harness existing graph-based methods to improve classifier performance. Existing approaches to personalized gene networks have the limitation that they depend on other samples in the data and must get re-computed whenever a new sample is introduced. Here, we propose a novel method, called Personalized Annotation-based Networks (PAN), that avoids this limitation by using curated annotation databases to transform gene expression data into a graph. Unlike competing methods, PANs are calculated for each sample independent of the population, making it a more efficient way to obtain single-sample networks. Using three breast cancer datasets as a case study, we show that PAN classifiers not only predict cancer relapse better than gene features alone, but also outperform PPI (protein-protein interactions) and population-level graph-based classifiers. This work demonstrates the practical advantages of graph-based classification for high-dimensional genomic data, while offering a new approach to making sample-specific networks. Supplementary information: PAN and the baselines are implemented in Python. Source code and data are available at https://github.com/thinng/PAN . |
doi_str_mv | 10.1109/TCBB.2021.3076422 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2519805193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9417708</ieee_id><sourcerecordid>2607892928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-bb31c81c935313a780b8e3c88f33420aaf22c4f9d486d878a43d4eaa0f97ce2d3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbK3-ABFkwYuX1H0l2fXWBF9QapGKx7DdTDA1zdbdBNFfb0JrD15mhplvBuZD6JySMaVE3SzSJBkzwuiYkzgSjB2gIQ3DOFAqEod9LcIgVBEfoBPvV4QwoYg4RgPOFVFhpIbobT6Z3eI5OG9rXZU_kONJXdtGN6Wtg0T7rjGD5su6D48L63DzDnjuIC9NT2Bb4MSB9g1OdW3A4Reo9MbDKToqdOXhbJdH6PX-bpE-BtPnh6d0Mg0MV6wJlktOjaRG8ZBTrmNJlhK4kbLgXDCidcGYEYXKhYxyGUsteC5Aa1Ko2ADL-Qhdb-9unP1swTfZuvQGqkrXYFufsZAqSbrAO_TqH7qyreu-7qiIxFIxxWRH0S1lnPXeQZFtXLnW7jujJOutZ731rLee7ax3O5e7y-1yDfl-409zB1xsgRIA9mMlaBwTyX8B9A2Etg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607892928</pqid></control><display><type>article</type><title>PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Nguyen, Thin ; Lee, Samuel C. ; Quinn, Thomas P. ; Truong, Buu ; Li, Xiaomei ; Tran, Truyen ; Venkatesh, Svetha ; Le, Thuc Duy</creator><creatorcontrib>Nguyen, Thin ; Lee, Samuel C. ; Quinn, Thomas P. ; Truong, Buu ; Li, Xiaomei ; Tran, Truyen ; Venkatesh, Svetha ; Le, Thuc Duy</creatorcontrib><description>The classification of clinical samples based on gene expression data is an important part of precision medicine. In this manuscript, we show how transforming gene expression data into a set of personalized (sample-specific) networks can allow us to harness existing graph-based methods to improve classifier performance. Existing approaches to personalized gene networks have the limitation that they depend on other samples in the data and must get re-computed whenever a new sample is introduced. Here, we propose a novel method, called Personalized Annotation-based Networks (PAN), that avoids this limitation by using curated annotation databases to transform gene expression data into a graph. Unlike competing methods, PANs are calculated for each sample independent of the population, making it a more efficient way to obtain single-sample networks. Using three breast cancer datasets as a case study, we show that PAN classifiers not only predict cancer relapse better than gene features alone, but also outperform PPI (protein-protein interactions) and population-level graph-based classifiers. This work demonstrates the practical advantages of graph-based classification for high-dimensional genomic data, while offering a new approach to making sample-specific networks. Supplementary information: PAN and the baselines are implemented in Python. Source code and data are available at https://github.com/thinng/PAN .</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2021.3076422</identifier><identifier>PMID: 33909569</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; annotation-based networks ; Annotations ; Breast cancer ; Breast Neoplasms - diagnosis ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Classification ; Classifiers ; Customization ; Databases, Genetic ; Female ; Gene expression ; Genomics ; Genomics - methods ; Humans ; Molecular Sequence Annotation - methods ; Neoplasm Recurrence, Local - diagnosis ; Neoplasm Recurrence, Local - genetics ; Neoplasm Recurrence, Local - metabolism ; Neoplasm Recurrence, Local - pathology ; Networks ; Ontologies ; Personalized medicine ; Precision medicine ; Precision Medicine - methods ; Protein interaction ; Protein Interaction Maps - genetics ; Proteins ; Sociology ; Software ; Source code ; Transcriptome - genetics</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2021-11, Vol.18 (6), p.2841-2847</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-bb31c81c935313a780b8e3c88f33420aaf22c4f9d486d878a43d4eaa0f97ce2d3</citedby><cites>FETCH-LOGICAL-c392t-bb31c81c935313a780b8e3c88f33420aaf22c4f9d486d878a43d4eaa0f97ce2d3</cites><orcidid>0000-0002-9732-4313 ; 0000-0003-3467-8963 ; 0000-0001-6531-8907 ; 0000-0001-8675-6631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9417708$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33909569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Thin</creatorcontrib><creatorcontrib>Lee, Samuel C.</creatorcontrib><creatorcontrib>Quinn, Thomas P.</creatorcontrib><creatorcontrib>Truong, Buu</creatorcontrib><creatorcontrib>Li, Xiaomei</creatorcontrib><creatorcontrib>Tran, Truyen</creatorcontrib><creatorcontrib>Venkatesh, Svetha</creatorcontrib><creatorcontrib>Le, Thuc Duy</creatorcontrib><title>PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>The classification of clinical samples based on gene expression data is an important part of precision medicine. In this manuscript, we show how transforming gene expression data into a set of personalized (sample-specific) networks can allow us to harness existing graph-based methods to improve classifier performance. Existing approaches to personalized gene networks have the limitation that they depend on other samples in the data and must get re-computed whenever a new sample is introduced. Here, we propose a novel method, called Personalized Annotation-based Networks (PAN), that avoids this limitation by using curated annotation databases to transform gene expression data into a graph. Unlike competing methods, PANs are calculated for each sample independent of the population, making it a more efficient way to obtain single-sample networks. Using three breast cancer datasets as a case study, we show that PAN classifiers not only predict cancer relapse better than gene features alone, but also outperform PPI (protein-protein interactions) and population-level graph-based classifiers. This work demonstrates the practical advantages of graph-based classification for high-dimensional genomic data, while offering a new approach to making sample-specific networks. Supplementary information: PAN and the baselines are implemented in Python. Source code and data are available at https://github.com/thinng/PAN .</description><subject>Algorithms</subject><subject>annotation-based networks</subject><subject>Annotations</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Customization</subject><subject>Databases, Genetic</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Molecular Sequence Annotation - methods</subject><subject>Neoplasm Recurrence, Local - diagnosis</subject><subject>Neoplasm Recurrence, Local - genetics</subject><subject>Neoplasm Recurrence, Local - metabolism</subject><subject>Neoplasm Recurrence, Local - pathology</subject><subject>Networks</subject><subject>Ontologies</subject><subject>Personalized medicine</subject><subject>Precision medicine</subject><subject>Precision Medicine - methods</subject><subject>Protein interaction</subject><subject>Protein Interaction Maps - genetics</subject><subject>Proteins</subject><subject>Sociology</subject><subject>Software</subject><subject>Source code</subject><subject>Transcriptome - genetics</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AQgBdRbK3-ABFkwYuX1H0l2fXWBF9QapGKx7DdTDA1zdbdBNFfb0JrD15mhplvBuZD6JySMaVE3SzSJBkzwuiYkzgSjB2gIQ3DOFAqEod9LcIgVBEfoBPvV4QwoYg4RgPOFVFhpIbobT6Z3eI5OG9rXZU_kONJXdtGN6Wtg0T7rjGD5su6D48L63DzDnjuIC9NT2Bb4MSB9g1OdW3A4Reo9MbDKToqdOXhbJdH6PX-bpE-BtPnh6d0Mg0MV6wJlktOjaRG8ZBTrmNJlhK4kbLgXDCidcGYEYXKhYxyGUsteC5Aa1Ko2ADL-Qhdb-9unP1swTfZuvQGqkrXYFufsZAqSbrAO_TqH7qyreu-7qiIxFIxxWRH0S1lnPXeQZFtXLnW7jujJOutZ731rLee7ax3O5e7y-1yDfl-409zB1xsgRIA9mMlaBwTyX8B9A2Etg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Nguyen, Thin</creator><creator>Lee, Samuel C.</creator><creator>Quinn, Thomas P.</creator><creator>Truong, Buu</creator><creator>Li, Xiaomei</creator><creator>Tran, Truyen</creator><creator>Venkatesh, Svetha</creator><creator>Le, Thuc Duy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9732-4313</orcidid><orcidid>https://orcid.org/0000-0003-3467-8963</orcidid><orcidid>https://orcid.org/0000-0001-6531-8907</orcidid><orcidid>https://orcid.org/0000-0001-8675-6631</orcidid></search><sort><creationdate>20211101</creationdate><title>PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse</title><author>Nguyen, Thin ; Lee, Samuel C. ; Quinn, Thomas P. ; Truong, Buu ; Li, Xiaomei ; Tran, Truyen ; Venkatesh, Svetha ; Le, Thuc Duy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-bb31c81c935313a780b8e3c88f33420aaf22c4f9d486d878a43d4eaa0f97ce2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>annotation-based networks</topic><topic>Annotations</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Customization</topic><topic>Databases, Genetic</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Molecular Sequence Annotation - methods</topic><topic>Neoplasm Recurrence, Local - diagnosis</topic><topic>Neoplasm Recurrence, Local - genetics</topic><topic>Neoplasm Recurrence, Local - metabolism</topic><topic>Neoplasm Recurrence, Local - pathology</topic><topic>Networks</topic><topic>Ontologies</topic><topic>Personalized medicine</topic><topic>Precision medicine</topic><topic>Precision Medicine - methods</topic><topic>Protein interaction</topic><topic>Protein Interaction Maps - genetics</topic><topic>Proteins</topic><topic>Sociology</topic><topic>Software</topic><topic>Source code</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Thin</creatorcontrib><creatorcontrib>Lee, Samuel C.</creatorcontrib><creatorcontrib>Quinn, Thomas P.</creatorcontrib><creatorcontrib>Truong, Buu</creatorcontrib><creatorcontrib>Li, Xiaomei</creatorcontrib><creatorcontrib>Tran, Truyen</creatorcontrib><creatorcontrib>Venkatesh, Svetha</creatorcontrib><creatorcontrib>Le, Thuc Duy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Thin</au><au>Lee, Samuel C.</au><au>Quinn, Thomas P.</au><au>Truong, Buu</au><au>Li, Xiaomei</au><au>Tran, Truyen</au><au>Venkatesh, Svetha</au><au>Le, Thuc Duy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>18</volume><issue>6</issue><spage>2841</spage><epage>2847</epage><pages>2841-2847</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>The classification of clinical samples based on gene expression data is an important part of precision medicine. In this manuscript, we show how transforming gene expression data into a set of personalized (sample-specific) networks can allow us to harness existing graph-based methods to improve classifier performance. Existing approaches to personalized gene networks have the limitation that they depend on other samples in the data and must get re-computed whenever a new sample is introduced. Here, we propose a novel method, called Personalized Annotation-based Networks (PAN), that avoids this limitation by using curated annotation databases to transform gene expression data into a graph. Unlike competing methods, PANs are calculated for each sample independent of the population, making it a more efficient way to obtain single-sample networks. Using three breast cancer datasets as a case study, we show that PAN classifiers not only predict cancer relapse better than gene features alone, but also outperform PPI (protein-protein interactions) and population-level graph-based classifiers. This work demonstrates the practical advantages of graph-based classification for high-dimensional genomic data, while offering a new approach to making sample-specific networks. Supplementary information: PAN and the baselines are implemented in Python. Source code and data are available at https://github.com/thinng/PAN .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33909569</pmid><doi>10.1109/TCBB.2021.3076422</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9732-4313</orcidid><orcidid>https://orcid.org/0000-0003-3467-8963</orcidid><orcidid>https://orcid.org/0000-0001-6531-8907</orcidid><orcidid>https://orcid.org/0000-0001-8675-6631</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2021-11, Vol.18 (6), p.2841-2847 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_proquest_miscellaneous_2519805193 |
source | IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Algorithms annotation-based networks Annotations Breast cancer Breast Neoplasms - diagnosis Breast Neoplasms - genetics Breast Neoplasms - metabolism Breast Neoplasms - pathology Classification Classifiers Customization Databases, Genetic Female Gene expression Genomics Genomics - methods Humans Molecular Sequence Annotation - methods Neoplasm Recurrence, Local - diagnosis Neoplasm Recurrence, Local - genetics Neoplasm Recurrence, Local - metabolism Neoplasm Recurrence, Local - pathology Networks Ontologies Personalized medicine Precision medicine Precision Medicine - methods Protein interaction Protein Interaction Maps - genetics Proteins Sociology Software Source code Transcriptome - genetics |
title | PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T15%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PAN:%20Personalized%20Annotation-Based%20Networks%20for%20the%20Prediction%20of%20Breast%20Cancer%20Relapse&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Nguyen,%20Thin&rft.date=2021-11-01&rft.volume=18&rft.issue=6&rft.spage=2841&rft.epage=2847&rft.pages=2841-2847&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2021.3076422&rft_dat=%3Cproquest_cross%3E2607892928%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-bb31c81c935313a780b8e3c88f33420aaf22c4f9d486d878a43d4eaa0f97ce2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607892928&rft_id=info:pmid/33909569&rft_ieee_id=9417708&rfr_iscdi=true |