Loading…
Boosting Li3V2(PO4)3 cathode stability using a concentrated aqueous electrolyte for high-voltage zinc batteries
We demonstrate that the capacity decay and voltage drop issues of the Li3V2(PO4)3 cathode are significantly addressed by using a concentrated aqueous electrolyte based on Zn and Li salts. The resultant aqueous Zn//Li3V2(PO4)3 battery achieves a high output voltage of 1.75 V and a long lifespan with...
Saved in:
Published in: | Chemical communications (Cambridge, England) England), 2021-05, Vol.57 (35), p.4319-4322 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate that the capacity decay and voltage drop issues of the Li3V2(PO4)3 cathode are significantly addressed by using a concentrated aqueous electrolyte based on Zn and Li salts. The resultant aqueous Zn//Li3V2(PO4)3 battery achieves a high output voltage of 1.75 V and a long lifespan with 82.3% capacity retention over 2000 cycles. Joint structural and spectroscopic characterizations reveal that this battery operates through Li+ (de)intercalation into the cathode along with Zn2+ plating/stripping at the anode. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/d0cc08115a |