Loading…

Truncated Actin-Targeting Macrolide Derivative Blocks Cancer Cell Motility and Invasion of Extracellular Matrix

Cancer metastasis is a complex process involving highly motile tumor cells that breach tissue barriers, enter the bloodstream and lymphatic system, and disseminate throughout the body as circulating tumor cells. The primary cellular mechanism contributing to these critical events is the reorganizati...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2021-05, Vol.143 (18), p.6847-6854
Main Authors: Pipaliya, Bhavin V, Trofimova, Daria N, Grange, Rebecca L, Aeluri, Madhu, Deng, Xu, Shah, Kavan, Craig, Andrew W, Allingham, John S, Evans, P. Andrew
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cancer metastasis is a complex process involving highly motile tumor cells that breach tissue barriers, enter the bloodstream and lymphatic system, and disseminate throughout the body as circulating tumor cells. The primary cellular mechanism contributing to these critical events is the reorganization of the actin cytoskeleton. Mycalolide B (MycB) is an actin-targeting marine macrolide that can suppress proliferation, migration, and invasion of breast and ovarian cancer cells at low nanomolar doses. Through structure–activity relationship studies focused on the actin-binding tail region (C24–C35) of MycB, we identified a potent truncated derivative that inhibits polymerization of G-actin and severs F-actin by binding to actin’s barbed end cleft. Biological analyses of this miniature MycB derivative demonstrate that it causes a rapid collapse of the actin cytoskeleton in ovarian cancer cells and impairs cancer cell motility and invasion of the extracellular matrix (ECM) by inhibiting invadopodia-mediated ECM degradation. These studies provide essential proof-of-principle for developing actin-targeting therapeutic agents to block cancer metastasis and establish a synthetically tractable barbed end-binding pharmacophore that can be further improved by adding targeting groups for precision drug design.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.0c12404