Loading…

A new elastic characterization method for anisotropic bilayer specimens via Bayesian resonant ultrasound spectroscopy

A novel nondestructive method for complete elastic characterization of substrate-coating bilayer specimens with distinct anisotropic layers via resonant ultrasound spectroscopy (RUS) and Bayesian inversion is developed here. Bayesian formulations of the RUS inversion problem—of quantifying elastic p...

Full description

Saved in:
Bibliographic Details
Published in:Ultrasonics 2021-08, Vol.115, p.106455-106455, Article 106455
Main Authors: Goodlet, Brent R., Bales, Ben, Pollock, Tresa M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-4597aa68f5f47d76b6f61ccfa878b12774f6692e4df871d1e3a20bbcb3ec83ae3
cites cdi_FETCH-LOGICAL-c408t-4597aa68f5f47d76b6f61ccfa878b12774f6692e4df871d1e3a20bbcb3ec83ae3
container_end_page 106455
container_issue
container_start_page 106455
container_title Ultrasonics
container_volume 115
creator Goodlet, Brent R.
Bales, Ben
Pollock, Tresa M.
description A novel nondestructive method for complete elastic characterization of substrate-coating bilayer specimens with distinct anisotropic layers via resonant ultrasound spectroscopy (RUS) and Bayesian inversion is developed here. Bayesian formulations of the RUS inversion problem—of quantifying elastic properties given a measured list of resonance frequencies recorded from a single, typically small, precisely fabricated, macroscopically homogeneous, linear-elastic specimen—are a recent development. Here we report the first Bayesian formulation of the bilayer problem, and through a series of practical examples, demonstrate novel parameter estimation capabilities of our open-source CmdStan-RUS code. Finding specimen geometry and the number of resonance modes used for inversion strongly govern the ability to retrieve individual elastic moduli. The concept of “invertability” is explored for a range of relevant geometries using virtual specimens that resemble experimental bilayers of plasma sprayed ceramic coatings on single crystal metallic substrates. A range of Bayesian posterior evaluation methods are addressed, particularly considering the large computational cost of the bilayer forward model. Laplace approximation methods are thus developed and implemented for bilayer geometry design space modeling and expedient estimates of parameter uncertainties. Ideal specimen design, different noise models, the influence of prior distributions, dual-likelihood fits incorporating measurements of the bare substrate, and how Bayesian RUS methods differ from traditional RUS optimization are discussed. •Bayesian resonant ultrasound spectroscopy (RUS) is extended to bi-material bilayers.•Nondestructive elastic characterization of hexagonal coatings affixed to a substrate.•Laplace posterior approximations developed for design space modeling and estimation.•Specimen geometry and the modes used for RUS inversion strongly govern invertability.•Fits demonstrated on both virtual and real plasma spray-coated superalloy substrates.
doi_str_mv 10.1016/j.ultras.2021.106455
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2522186479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X21000895</els_id><sourcerecordid>2522186479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4597aa68f5f47d76b6f61ccfa878b12774f6692e4df871d1e3a20bbcb3ec83ae3</originalsourceid><addsrcrecordid>eNp9kE2L1TAUhoMoznX0H4hk6abXfDVJN8I4-AUDbhTchTQ9YXJpk5qkI9dfb8aOLl0dODzv-XgQeknJkRIq35yO21yzLUdGGG0tKfr-ETpQrUQ3DFI_RgdCBO0kE98v0LNSToRQoSl_ii44HwThnB7QdoUj_MQw21KDw-7WZusq5PDL1pAiXqDepgn7lLGNoaSa09q4Mcz2DBmXFVxYIBZ8Fyx-13ol2IgzlBRtrHg_MW1x-oO2dHFpPT9HT7ydC7x4qJfo24f3X68_dTdfPn6-vrrpnCC6dqIflLVS-94LNSk5Si-pc95qpUfKlBJeyoGBmLxWdKLALSPj6EYOTnML_BK93ueuOf3YoFSzhOJgnm2EtBXDesaolkINDRU76tqNJYM3aw6LzWdDibkXbk5m_8bcCze78BZ79bBhGxeY_oX-Gm7A2x2A9uddgGyKCxAdTCE3IWZK4f8bfgMQ6Zdh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522186479</pqid></control><display><type>article</type><title>A new elastic characterization method for anisotropic bilayer specimens via Bayesian resonant ultrasound spectroscopy</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Goodlet, Brent R. ; Bales, Ben ; Pollock, Tresa M.</creator><creatorcontrib>Goodlet, Brent R. ; Bales, Ben ; Pollock, Tresa M.</creatorcontrib><description>A novel nondestructive method for complete elastic characterization of substrate-coating bilayer specimens with distinct anisotropic layers via resonant ultrasound spectroscopy (RUS) and Bayesian inversion is developed here. Bayesian formulations of the RUS inversion problem—of quantifying elastic properties given a measured list of resonance frequencies recorded from a single, typically small, precisely fabricated, macroscopically homogeneous, linear-elastic specimen—are a recent development. Here we report the first Bayesian formulation of the bilayer problem, and through a series of practical examples, demonstrate novel parameter estimation capabilities of our open-source CmdStan-RUS code. Finding specimen geometry and the number of resonance modes used for inversion strongly govern the ability to retrieve individual elastic moduli. The concept of “invertability” is explored for a range of relevant geometries using virtual specimens that resemble experimental bilayers of plasma sprayed ceramic coatings on single crystal metallic substrates. A range of Bayesian posterior evaluation methods are addressed, particularly considering the large computational cost of the bilayer forward model. Laplace approximation methods are thus developed and implemented for bilayer geometry design space modeling and expedient estimates of parameter uncertainties. Ideal specimen design, different noise models, the influence of prior distributions, dual-likelihood fits incorporating measurements of the bare substrate, and how Bayesian RUS methods differ from traditional RUS optimization are discussed. •Bayesian resonant ultrasound spectroscopy (RUS) is extended to bi-material bilayers.•Nondestructive elastic characterization of hexagonal coatings affixed to a substrate.•Laplace posterior approximations developed for design space modeling and estimation.•Specimen geometry and the modes used for RUS inversion strongly govern invertability.•Fits demonstrated on both virtual and real plasma spray-coated superalloy substrates.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/j.ultras.2021.106455</identifier><identifier>PMID: 33940331</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bayesian inference ; Bilayer ; Elastic constants ; Inversion ; Resonance ; Resonant ultrasound spectroscopy ; RUS ; Ultrasonic</subject><ispartof>Ultrasonics, 2021-08, Vol.115, p.106455-106455, Article 106455</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4597aa68f5f47d76b6f61ccfa878b12774f6692e4df871d1e3a20bbcb3ec83ae3</citedby><cites>FETCH-LOGICAL-c408t-4597aa68f5f47d76b6f61ccfa878b12774f6692e4df871d1e3a20bbcb3ec83ae3</cites><orcidid>0000-0002-2334-4071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33940331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goodlet, Brent R.</creatorcontrib><creatorcontrib>Bales, Ben</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><title>A new elastic characterization method for anisotropic bilayer specimens via Bayesian resonant ultrasound spectroscopy</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>A novel nondestructive method for complete elastic characterization of substrate-coating bilayer specimens with distinct anisotropic layers via resonant ultrasound spectroscopy (RUS) and Bayesian inversion is developed here. Bayesian formulations of the RUS inversion problem—of quantifying elastic properties given a measured list of resonance frequencies recorded from a single, typically small, precisely fabricated, macroscopically homogeneous, linear-elastic specimen—are a recent development. Here we report the first Bayesian formulation of the bilayer problem, and through a series of practical examples, demonstrate novel parameter estimation capabilities of our open-source CmdStan-RUS code. Finding specimen geometry and the number of resonance modes used for inversion strongly govern the ability to retrieve individual elastic moduli. The concept of “invertability” is explored for a range of relevant geometries using virtual specimens that resemble experimental bilayers of plasma sprayed ceramic coatings on single crystal metallic substrates. A range of Bayesian posterior evaluation methods are addressed, particularly considering the large computational cost of the bilayer forward model. Laplace approximation methods are thus developed and implemented for bilayer geometry design space modeling and expedient estimates of parameter uncertainties. Ideal specimen design, different noise models, the influence of prior distributions, dual-likelihood fits incorporating measurements of the bare substrate, and how Bayesian RUS methods differ from traditional RUS optimization are discussed. •Bayesian resonant ultrasound spectroscopy (RUS) is extended to bi-material bilayers.•Nondestructive elastic characterization of hexagonal coatings affixed to a substrate.•Laplace posterior approximations developed for design space modeling and estimation.•Specimen geometry and the modes used for RUS inversion strongly govern invertability.•Fits demonstrated on both virtual and real plasma spray-coated superalloy substrates.</description><subject>Bayesian inference</subject><subject>Bilayer</subject><subject>Elastic constants</subject><subject>Inversion</subject><subject>Resonance</subject><subject>Resonant ultrasound spectroscopy</subject><subject>RUS</subject><subject>Ultrasonic</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE2L1TAUhoMoznX0H4hk6abXfDVJN8I4-AUDbhTchTQ9YXJpk5qkI9dfb8aOLl0dODzv-XgQeknJkRIq35yO21yzLUdGGG0tKfr-ETpQrUQ3DFI_RgdCBO0kE98v0LNSToRQoSl_ii44HwThnB7QdoUj_MQw21KDw-7WZusq5PDL1pAiXqDepgn7lLGNoaSa09q4Mcz2DBmXFVxYIBZ8Fyx-13ol2IgzlBRtrHg_MW1x-oO2dHFpPT9HT7ydC7x4qJfo24f3X68_dTdfPn6-vrrpnCC6dqIflLVS-94LNSk5Si-pc95qpUfKlBJeyoGBmLxWdKLALSPj6EYOTnML_BK93ueuOf3YoFSzhOJgnm2EtBXDesaolkINDRU76tqNJYM3aw6LzWdDibkXbk5m_8bcCze78BZ79bBhGxeY_oX-Gm7A2x2A9uddgGyKCxAdTCE3IWZK4f8bfgMQ6Zdh</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Goodlet, Brent R.</creator><creator>Bales, Ben</creator><creator>Pollock, Tresa M.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2334-4071</orcidid></search><sort><creationdate>20210801</creationdate><title>A new elastic characterization method for anisotropic bilayer specimens via Bayesian resonant ultrasound spectroscopy</title><author>Goodlet, Brent R. ; Bales, Ben ; Pollock, Tresa M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4597aa68f5f47d76b6f61ccfa878b12774f6692e4df871d1e3a20bbcb3ec83ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian inference</topic><topic>Bilayer</topic><topic>Elastic constants</topic><topic>Inversion</topic><topic>Resonance</topic><topic>Resonant ultrasound spectroscopy</topic><topic>RUS</topic><topic>Ultrasonic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goodlet, Brent R.</creatorcontrib><creatorcontrib>Bales, Ben</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goodlet, Brent R.</au><au>Bales, Ben</au><au>Pollock, Tresa M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new elastic characterization method for anisotropic bilayer specimens via Bayesian resonant ultrasound spectroscopy</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>115</volume><spage>106455</spage><epage>106455</epage><pages>106455-106455</pages><artnum>106455</artnum><issn>0041-624X</issn><eissn>1874-9968</eissn><abstract>A novel nondestructive method for complete elastic characterization of substrate-coating bilayer specimens with distinct anisotropic layers via resonant ultrasound spectroscopy (RUS) and Bayesian inversion is developed here. Bayesian formulations of the RUS inversion problem—of quantifying elastic properties given a measured list of resonance frequencies recorded from a single, typically small, precisely fabricated, macroscopically homogeneous, linear-elastic specimen—are a recent development. Here we report the first Bayesian formulation of the bilayer problem, and through a series of practical examples, demonstrate novel parameter estimation capabilities of our open-source CmdStan-RUS code. Finding specimen geometry and the number of resonance modes used for inversion strongly govern the ability to retrieve individual elastic moduli. The concept of “invertability” is explored for a range of relevant geometries using virtual specimens that resemble experimental bilayers of plasma sprayed ceramic coatings on single crystal metallic substrates. A range of Bayesian posterior evaluation methods are addressed, particularly considering the large computational cost of the bilayer forward model. Laplace approximation methods are thus developed and implemented for bilayer geometry design space modeling and expedient estimates of parameter uncertainties. Ideal specimen design, different noise models, the influence of prior distributions, dual-likelihood fits incorporating measurements of the bare substrate, and how Bayesian RUS methods differ from traditional RUS optimization are discussed. •Bayesian resonant ultrasound spectroscopy (RUS) is extended to bi-material bilayers.•Nondestructive elastic characterization of hexagonal coatings affixed to a substrate.•Laplace posterior approximations developed for design space modeling and estimation.•Specimen geometry and the modes used for RUS inversion strongly govern invertability.•Fits demonstrated on both virtual and real plasma spray-coated superalloy substrates.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33940331</pmid><doi>10.1016/j.ultras.2021.106455</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2334-4071</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0041-624X
ispartof Ultrasonics, 2021-08, Vol.115, p.106455-106455, Article 106455
issn 0041-624X
1874-9968
language eng
recordid cdi_proquest_miscellaneous_2522186479
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Bayesian inference
Bilayer
Elastic constants
Inversion
Resonance
Resonant ultrasound spectroscopy
RUS
Ultrasonic
title A new elastic characterization method for anisotropic bilayer specimens via Bayesian resonant ultrasound spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20elastic%20characterization%20method%20for%20anisotropic%20bilayer%20specimens%20via%20Bayesian%20resonant%20ultrasound%20spectroscopy&rft.jtitle=Ultrasonics&rft.au=Goodlet,%20Brent%20R.&rft.date=2021-08-01&rft.volume=115&rft.spage=106455&rft.epage=106455&rft.pages=106455-106455&rft.artnum=106455&rft.issn=0041-624X&rft.eissn=1874-9968&rft_id=info:doi/10.1016/j.ultras.2021.106455&rft_dat=%3Cproquest_cross%3E2522186479%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-4597aa68f5f47d76b6f61ccfa878b12774f6692e4df871d1e3a20bbcb3ec83ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522186479&rft_id=info:pmid/33940331&rfr_iscdi=true