Loading…
A new elastic characterization method for anisotropic bilayer specimens via Bayesian resonant ultrasound spectroscopy
A novel nondestructive method for complete elastic characterization of substrate-coating bilayer specimens with distinct anisotropic layers via resonant ultrasound spectroscopy (RUS) and Bayesian inversion is developed here. Bayesian formulations of the RUS inversion problem—of quantifying elastic p...
Saved in:
Published in: | Ultrasonics 2021-08, Vol.115, p.106455-106455, Article 106455 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-4597aa68f5f47d76b6f61ccfa878b12774f6692e4df871d1e3a20bbcb3ec83ae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-4597aa68f5f47d76b6f61ccfa878b12774f6692e4df871d1e3a20bbcb3ec83ae3 |
container_end_page | 106455 |
container_issue | |
container_start_page | 106455 |
container_title | Ultrasonics |
container_volume | 115 |
creator | Goodlet, Brent R. Bales, Ben Pollock, Tresa M. |
description | A novel nondestructive method for complete elastic characterization of substrate-coating bilayer specimens with distinct anisotropic layers via resonant ultrasound spectroscopy (RUS) and Bayesian inversion is developed here. Bayesian formulations of the RUS inversion problem—of quantifying elastic properties given a measured list of resonance frequencies recorded from a single, typically small, precisely fabricated, macroscopically homogeneous, linear-elastic specimen—are a recent development. Here we report the first Bayesian formulation of the bilayer problem, and through a series of practical examples, demonstrate novel parameter estimation capabilities of our open-source CmdStan-RUS code. Finding specimen geometry and the number of resonance modes used for inversion strongly govern the ability to retrieve individual elastic moduli. The concept of “invertability” is explored for a range of relevant geometries using virtual specimens that resemble experimental bilayers of plasma sprayed ceramic coatings on single crystal metallic substrates. A range of Bayesian posterior evaluation methods are addressed, particularly considering the large computational cost of the bilayer forward model. Laplace approximation methods are thus developed and implemented for bilayer geometry design space modeling and expedient estimates of parameter uncertainties. Ideal specimen design, different noise models, the influence of prior distributions, dual-likelihood fits incorporating measurements of the bare substrate, and how Bayesian RUS methods differ from traditional RUS optimization are discussed.
•Bayesian resonant ultrasound spectroscopy (RUS) is extended to bi-material bilayers.•Nondestructive elastic characterization of hexagonal coatings affixed to a substrate.•Laplace posterior approximations developed for design space modeling and estimation.•Specimen geometry and the modes used for RUS inversion strongly govern invertability.•Fits demonstrated on both virtual and real plasma spray-coated superalloy substrates. |
doi_str_mv | 10.1016/j.ultras.2021.106455 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2522186479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X21000895</els_id><sourcerecordid>2522186479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4597aa68f5f47d76b6f61ccfa878b12774f6692e4df871d1e3a20bbcb3ec83ae3</originalsourceid><addsrcrecordid>eNp9kE2L1TAUhoMoznX0H4hk6abXfDVJN8I4-AUDbhTchTQ9YXJpk5qkI9dfb8aOLl0dODzv-XgQeknJkRIq35yO21yzLUdGGG0tKfr-ETpQrUQ3DFI_RgdCBO0kE98v0LNSToRQoSl_ii44HwThnB7QdoUj_MQw21KDw-7WZusq5PDL1pAiXqDepgn7lLGNoaSa09q4Mcz2DBmXFVxYIBZ8Fyx-13ol2IgzlBRtrHg_MW1x-oO2dHFpPT9HT7ydC7x4qJfo24f3X68_dTdfPn6-vrrpnCC6dqIflLVS-94LNSk5Si-pc95qpUfKlBJeyoGBmLxWdKLALSPj6EYOTnML_BK93ueuOf3YoFSzhOJgnm2EtBXDesaolkINDRU76tqNJYM3aw6LzWdDibkXbk5m_8bcCze78BZ79bBhGxeY_oX-Gm7A2x2A9uddgGyKCxAdTCE3IWZK4f8bfgMQ6Zdh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522186479</pqid></control><display><type>article</type><title>A new elastic characterization method for anisotropic bilayer specimens via Bayesian resonant ultrasound spectroscopy</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Goodlet, Brent R. ; Bales, Ben ; Pollock, Tresa M.</creator><creatorcontrib>Goodlet, Brent R. ; Bales, Ben ; Pollock, Tresa M.</creatorcontrib><description>A novel nondestructive method for complete elastic characterization of substrate-coating bilayer specimens with distinct anisotropic layers via resonant ultrasound spectroscopy (RUS) and Bayesian inversion is developed here. Bayesian formulations of the RUS inversion problem—of quantifying elastic properties given a measured list of resonance frequencies recorded from a single, typically small, precisely fabricated, macroscopically homogeneous, linear-elastic specimen—are a recent development. Here we report the first Bayesian formulation of the bilayer problem, and through a series of practical examples, demonstrate novel parameter estimation capabilities of our open-source CmdStan-RUS code. Finding specimen geometry and the number of resonance modes used for inversion strongly govern the ability to retrieve individual elastic moduli. The concept of “invertability” is explored for a range of relevant geometries using virtual specimens that resemble experimental bilayers of plasma sprayed ceramic coatings on single crystal metallic substrates. A range of Bayesian posterior evaluation methods are addressed, particularly considering the large computational cost of the bilayer forward model. Laplace approximation methods are thus developed and implemented for bilayer geometry design space modeling and expedient estimates of parameter uncertainties. Ideal specimen design, different noise models, the influence of prior distributions, dual-likelihood fits incorporating measurements of the bare substrate, and how Bayesian RUS methods differ from traditional RUS optimization are discussed.
•Bayesian resonant ultrasound spectroscopy (RUS) is extended to bi-material bilayers.•Nondestructive elastic characterization of hexagonal coatings affixed to a substrate.•Laplace posterior approximations developed for design space modeling and estimation.•Specimen geometry and the modes used for RUS inversion strongly govern invertability.•Fits demonstrated on both virtual and real plasma spray-coated superalloy substrates.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/j.ultras.2021.106455</identifier><identifier>PMID: 33940331</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bayesian inference ; Bilayer ; Elastic constants ; Inversion ; Resonance ; Resonant ultrasound spectroscopy ; RUS ; Ultrasonic</subject><ispartof>Ultrasonics, 2021-08, Vol.115, p.106455-106455, Article 106455</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4597aa68f5f47d76b6f61ccfa878b12774f6692e4df871d1e3a20bbcb3ec83ae3</citedby><cites>FETCH-LOGICAL-c408t-4597aa68f5f47d76b6f61ccfa878b12774f6692e4df871d1e3a20bbcb3ec83ae3</cites><orcidid>0000-0002-2334-4071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33940331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goodlet, Brent R.</creatorcontrib><creatorcontrib>Bales, Ben</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><title>A new elastic characterization method for anisotropic bilayer specimens via Bayesian resonant ultrasound spectroscopy</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>A novel nondestructive method for complete elastic characterization of substrate-coating bilayer specimens with distinct anisotropic layers via resonant ultrasound spectroscopy (RUS) and Bayesian inversion is developed here. Bayesian formulations of the RUS inversion problem—of quantifying elastic properties given a measured list of resonance frequencies recorded from a single, typically small, precisely fabricated, macroscopically homogeneous, linear-elastic specimen—are a recent development. Here we report the first Bayesian formulation of the bilayer problem, and through a series of practical examples, demonstrate novel parameter estimation capabilities of our open-source CmdStan-RUS code. Finding specimen geometry and the number of resonance modes used for inversion strongly govern the ability to retrieve individual elastic moduli. The concept of “invertability” is explored for a range of relevant geometries using virtual specimens that resemble experimental bilayers of plasma sprayed ceramic coatings on single crystal metallic substrates. A range of Bayesian posterior evaluation methods are addressed, particularly considering the large computational cost of the bilayer forward model. Laplace approximation methods are thus developed and implemented for bilayer geometry design space modeling and expedient estimates of parameter uncertainties. Ideal specimen design, different noise models, the influence of prior distributions, dual-likelihood fits incorporating measurements of the bare substrate, and how Bayesian RUS methods differ from traditional RUS optimization are discussed.
•Bayesian resonant ultrasound spectroscopy (RUS) is extended to bi-material bilayers.•Nondestructive elastic characterization of hexagonal coatings affixed to a substrate.•Laplace posterior approximations developed for design space modeling and estimation.•Specimen geometry and the modes used for RUS inversion strongly govern invertability.•Fits demonstrated on both virtual and real plasma spray-coated superalloy substrates.</description><subject>Bayesian inference</subject><subject>Bilayer</subject><subject>Elastic constants</subject><subject>Inversion</subject><subject>Resonance</subject><subject>Resonant ultrasound spectroscopy</subject><subject>RUS</subject><subject>Ultrasonic</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE2L1TAUhoMoznX0H4hk6abXfDVJN8I4-AUDbhTchTQ9YXJpk5qkI9dfb8aOLl0dODzv-XgQeknJkRIq35yO21yzLUdGGG0tKfr-ETpQrUQ3DFI_RgdCBO0kE98v0LNSToRQoSl_ii44HwThnB7QdoUj_MQw21KDw-7WZusq5PDL1pAiXqDepgn7lLGNoaSa09q4Mcz2DBmXFVxYIBZ8Fyx-13ol2IgzlBRtrHg_MW1x-oO2dHFpPT9HT7ydC7x4qJfo24f3X68_dTdfPn6-vrrpnCC6dqIflLVS-94LNSk5Si-pc95qpUfKlBJeyoGBmLxWdKLALSPj6EYOTnML_BK93ueuOf3YoFSzhOJgnm2EtBXDesaolkINDRU76tqNJYM3aw6LzWdDibkXbk5m_8bcCze78BZ79bBhGxeY_oX-Gm7A2x2A9uddgGyKCxAdTCE3IWZK4f8bfgMQ6Zdh</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Goodlet, Brent R.</creator><creator>Bales, Ben</creator><creator>Pollock, Tresa M.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2334-4071</orcidid></search><sort><creationdate>20210801</creationdate><title>A new elastic characterization method for anisotropic bilayer specimens via Bayesian resonant ultrasound spectroscopy</title><author>Goodlet, Brent R. ; Bales, Ben ; Pollock, Tresa M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4597aa68f5f47d76b6f61ccfa878b12774f6692e4df871d1e3a20bbcb3ec83ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian inference</topic><topic>Bilayer</topic><topic>Elastic constants</topic><topic>Inversion</topic><topic>Resonance</topic><topic>Resonant ultrasound spectroscopy</topic><topic>RUS</topic><topic>Ultrasonic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goodlet, Brent R.</creatorcontrib><creatorcontrib>Bales, Ben</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goodlet, Brent R.</au><au>Bales, Ben</au><au>Pollock, Tresa M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new elastic characterization method for anisotropic bilayer specimens via Bayesian resonant ultrasound spectroscopy</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>115</volume><spage>106455</spage><epage>106455</epage><pages>106455-106455</pages><artnum>106455</artnum><issn>0041-624X</issn><eissn>1874-9968</eissn><abstract>A novel nondestructive method for complete elastic characterization of substrate-coating bilayer specimens with distinct anisotropic layers via resonant ultrasound spectroscopy (RUS) and Bayesian inversion is developed here. Bayesian formulations of the RUS inversion problem—of quantifying elastic properties given a measured list of resonance frequencies recorded from a single, typically small, precisely fabricated, macroscopically homogeneous, linear-elastic specimen—are a recent development. Here we report the first Bayesian formulation of the bilayer problem, and through a series of practical examples, demonstrate novel parameter estimation capabilities of our open-source CmdStan-RUS code. Finding specimen geometry and the number of resonance modes used for inversion strongly govern the ability to retrieve individual elastic moduli. The concept of “invertability” is explored for a range of relevant geometries using virtual specimens that resemble experimental bilayers of plasma sprayed ceramic coatings on single crystal metallic substrates. A range of Bayesian posterior evaluation methods are addressed, particularly considering the large computational cost of the bilayer forward model. Laplace approximation methods are thus developed and implemented for bilayer geometry design space modeling and expedient estimates of parameter uncertainties. Ideal specimen design, different noise models, the influence of prior distributions, dual-likelihood fits incorporating measurements of the bare substrate, and how Bayesian RUS methods differ from traditional RUS optimization are discussed.
•Bayesian resonant ultrasound spectroscopy (RUS) is extended to bi-material bilayers.•Nondestructive elastic characterization of hexagonal coatings affixed to a substrate.•Laplace posterior approximations developed for design space modeling and estimation.•Specimen geometry and the modes used for RUS inversion strongly govern invertability.•Fits demonstrated on both virtual and real plasma spray-coated superalloy substrates.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33940331</pmid><doi>10.1016/j.ultras.2021.106455</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2334-4071</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-624X |
ispartof | Ultrasonics, 2021-08, Vol.115, p.106455-106455, Article 106455 |
issn | 0041-624X 1874-9968 |
language | eng |
recordid | cdi_proquest_miscellaneous_2522186479 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Bayesian inference Bilayer Elastic constants Inversion Resonance Resonant ultrasound spectroscopy RUS Ultrasonic |
title | A new elastic characterization method for anisotropic bilayer specimens via Bayesian resonant ultrasound spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20elastic%20characterization%20method%20for%20anisotropic%20bilayer%20specimens%20via%20Bayesian%20resonant%20ultrasound%20spectroscopy&rft.jtitle=Ultrasonics&rft.au=Goodlet,%20Brent%20R.&rft.date=2021-08-01&rft.volume=115&rft.spage=106455&rft.epage=106455&rft.pages=106455-106455&rft.artnum=106455&rft.issn=0041-624X&rft.eissn=1874-9968&rft_id=info:doi/10.1016/j.ultras.2021.106455&rft_dat=%3Cproquest_cross%3E2522186479%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-4597aa68f5f47d76b6f61ccfa878b12774f6692e4df871d1e3a20bbcb3ec83ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522186479&rft_id=info:pmid/33940331&rfr_iscdi=true |