Loading…

MetaFusion: a high-confidence metacaller for filtering and prioritizing RNA-seq gene fusion candidates

Abstract Motivation Current fusion detection tools use diverse calling approaches and provide varying results, making selection of the appropriate tool challenging. Ensemble fusion calling techniques appear promising; however, current options have limited accessibility and function. Results MetaFusi...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) England), 2021-10, Vol.37 (19), p.3144-3151
Main Authors: Apostolides, Michael, Jiang, Yue, Husić, Mia, Siddaway, Robert, Hawkins, Cynthia, Turinsky, Andrei L, Brudno, Michael, Ramani, Arun K
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-b8801dc252d9b81b65db1cbb5fd67d1d465d5a9a1b6d1f0b6c3e266f61fe80183
cites cdi_FETCH-LOGICAL-c401t-b8801dc252d9b81b65db1cbb5fd67d1d465d5a9a1b6d1f0b6c3e266f61fe80183
container_end_page 3151
container_issue 19
container_start_page 3144
container_title Bioinformatics (Oxford, England)
container_volume 37
creator Apostolides, Michael
Jiang, Yue
Husić, Mia
Siddaway, Robert
Hawkins, Cynthia
Turinsky, Andrei L
Brudno, Michael
Ramani, Arun K
description Abstract Motivation Current fusion detection tools use diverse calling approaches and provide varying results, making selection of the appropriate tool challenging. Ensemble fusion calling techniques appear promising; however, current options have limited accessibility and function. Results MetaFusion is a flexible metacalling tool that amalgamates outputs from any number of fusion callers. Individual caller results are standardized by conversion into the new file type Common Fusion Format. Calls are annotated, merged using graph clustering, filtered and ranked to provide a final output of high-confidence candidates. MetaFusion consistently achieves higher precision and recall than individual callers on real and simulated datasets, and reaches up to 100% precision, indicating that ensemble calling is imperative for high-confidence results. MetaFusion uses FusionAnnotator to annotate calls with information from cancer fusion databases and is provided with a Benchmarking Toolkit to calibrate new callers. Availability and implementation MetaFusion is freely available at https://github.com/ccmbioinfo/MetaFusion. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btab249
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2522388886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btab249</oup_id><sourcerecordid>2522388886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-b8801dc252d9b81b65db1cbb5fd67d1d465d5a9a1b6d1f0b6c3e266f61fe80183</originalsourceid><addsrcrecordid>eNqNkE1PAjEQhhujEUT_AunRy0q7H2XXGyGiJqiJ0fOmH1Oo2d1C2z3or7cIknizl2lmnvedzIvQmJIbSqpsIow1nbau5cFIPxGBizSvTtCQZmya5CWlp8c_yQbowvsPQkhBCnaOBllW5XlZFUOknyDwRe-N7W4xx2uzWifSdtoo6CTgNk4lbxpwOC7D2jQBnOlWmHcKb5yxzgTztWu8Ps8SD1u8gg6w_jHEMlJG8QD-Ep1p3ni4OtQRel_cvc0fkuXL_eN8tkxkTmhIRFkSqmRapKoSJRWsUIJKIQqt2FRRlcdGwSseJ4pqIpjMIGVMM6ohKstshK73vhtntz34ULfGS2ga3oHtfR2d06yMj0WU7VHprPcOdB3vabn7rCmpdxnXfzOuDxlH4fiwoxctqKPsN9QI0D1g-81_Tb8B-GmRUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522388886</pqid></control><display><type>article</type><title>MetaFusion: a high-confidence metacaller for filtering and prioritizing RNA-seq gene fusion candidates</title><source>Oxford Journals Open Access Collection</source><creator>Apostolides, Michael ; Jiang, Yue ; Husić, Mia ; Siddaway, Robert ; Hawkins, Cynthia ; Turinsky, Andrei L ; Brudno, Michael ; Ramani, Arun K</creator><contributor>Kelso, Janet</contributor><creatorcontrib>Apostolides, Michael ; Jiang, Yue ; Husić, Mia ; Siddaway, Robert ; Hawkins, Cynthia ; Turinsky, Andrei L ; Brudno, Michael ; Ramani, Arun K ; Kelso, Janet</creatorcontrib><description>Abstract Motivation Current fusion detection tools use diverse calling approaches and provide varying results, making selection of the appropriate tool challenging. Ensemble fusion calling techniques appear promising; however, current options have limited accessibility and function. Results MetaFusion is a flexible metacalling tool that amalgamates outputs from any number of fusion callers. Individual caller results are standardized by conversion into the new file type Common Fusion Format. Calls are annotated, merged using graph clustering, filtered and ranked to provide a final output of high-confidence candidates. MetaFusion consistently achieves higher precision and recall than individual callers on real and simulated datasets, and reaches up to 100% precision, indicating that ensemble calling is imperative for high-confidence results. MetaFusion uses FusionAnnotator to annotate calls with information from cancer fusion databases and is provided with a Benchmarking Toolkit to calibrate new callers. Availability and implementation MetaFusion is freely available at https://github.com/ccmbioinfo/MetaFusion. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btab249</identifier><identifier>PMID: 33944895</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Bioinformatics (Oxford, England), 2021-10, Vol.37 (19), p.3144-3151</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-b8801dc252d9b81b65db1cbb5fd67d1d465d5a9a1b6d1f0b6c3e266f61fe80183</citedby><cites>FETCH-LOGICAL-c401t-b8801dc252d9b81b65db1cbb5fd67d1d465d5a9a1b6d1f0b6c3e266f61fe80183</cites><orcidid>0000-0002-8162-8523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btab249$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33944895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kelso, Janet</contributor><creatorcontrib>Apostolides, Michael</creatorcontrib><creatorcontrib>Jiang, Yue</creatorcontrib><creatorcontrib>Husić, Mia</creatorcontrib><creatorcontrib>Siddaway, Robert</creatorcontrib><creatorcontrib>Hawkins, Cynthia</creatorcontrib><creatorcontrib>Turinsky, Andrei L</creatorcontrib><creatorcontrib>Brudno, Michael</creatorcontrib><creatorcontrib>Ramani, Arun K</creatorcontrib><title>MetaFusion: a high-confidence metacaller for filtering and prioritizing RNA-seq gene fusion candidates</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Current fusion detection tools use diverse calling approaches and provide varying results, making selection of the appropriate tool challenging. Ensemble fusion calling techniques appear promising; however, current options have limited accessibility and function. Results MetaFusion is a flexible metacalling tool that amalgamates outputs from any number of fusion callers. Individual caller results are standardized by conversion into the new file type Common Fusion Format. Calls are annotated, merged using graph clustering, filtered and ranked to provide a final output of high-confidence candidates. MetaFusion consistently achieves higher precision and recall than individual callers on real and simulated datasets, and reaches up to 100% precision, indicating that ensemble calling is imperative for high-confidence results. MetaFusion uses FusionAnnotator to annotate calls with information from cancer fusion databases and is provided with a Benchmarking Toolkit to calibrate new callers. Availability and implementation MetaFusion is freely available at https://github.com/ccmbioinfo/MetaFusion. Supplementary information Supplementary data are available at Bioinformatics online.</description><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PAjEQhhujEUT_AunRy0q7H2XXGyGiJqiJ0fOmH1Oo2d1C2z3or7cIknizl2lmnvedzIvQmJIbSqpsIow1nbau5cFIPxGBizSvTtCQZmya5CWlp8c_yQbowvsPQkhBCnaOBllW5XlZFUOknyDwRe-N7W4xx2uzWifSdtoo6CTgNk4lbxpwOC7D2jQBnOlWmHcKb5yxzgTztWu8Ps8SD1u8gg6w_jHEMlJG8QD-Ep1p3ni4OtQRel_cvc0fkuXL_eN8tkxkTmhIRFkSqmRapKoSJRWsUIJKIQqt2FRRlcdGwSseJ4pqIpjMIGVMM6ohKstshK73vhtntz34ULfGS2ga3oHtfR2d06yMj0WU7VHprPcOdB3vabn7rCmpdxnXfzOuDxlH4fiwoxctqKPsN9QI0D1g-81_Tb8B-GmRUg</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Apostolides, Michael</creator><creator>Jiang, Yue</creator><creator>Husić, Mia</creator><creator>Siddaway, Robert</creator><creator>Hawkins, Cynthia</creator><creator>Turinsky, Andrei L</creator><creator>Brudno, Michael</creator><creator>Ramani, Arun K</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8162-8523</orcidid></search><sort><creationdate>20211011</creationdate><title>MetaFusion: a high-confidence metacaller for filtering and prioritizing RNA-seq gene fusion candidates</title><author>Apostolides, Michael ; Jiang, Yue ; Husić, Mia ; Siddaway, Robert ; Hawkins, Cynthia ; Turinsky, Andrei L ; Brudno, Michael ; Ramani, Arun K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-b8801dc252d9b81b65db1cbb5fd67d1d465d5a9a1b6d1f0b6c3e266f61fe80183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apostolides, Michael</creatorcontrib><creatorcontrib>Jiang, Yue</creatorcontrib><creatorcontrib>Husić, Mia</creatorcontrib><creatorcontrib>Siddaway, Robert</creatorcontrib><creatorcontrib>Hawkins, Cynthia</creatorcontrib><creatorcontrib>Turinsky, Andrei L</creatorcontrib><creatorcontrib>Brudno, Michael</creatorcontrib><creatorcontrib>Ramani, Arun K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Apostolides, Michael</au><au>Jiang, Yue</au><au>Husić, Mia</au><au>Siddaway, Robert</au><au>Hawkins, Cynthia</au><au>Turinsky, Andrei L</au><au>Brudno, Michael</au><au>Ramani, Arun K</au><au>Kelso, Janet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MetaFusion: a high-confidence metacaller for filtering and prioritizing RNA-seq gene fusion candidates</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2021-10-11</date><risdate>2021</risdate><volume>37</volume><issue>19</issue><spage>3144</spage><epage>3151</epage><pages>3144-3151</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract Motivation Current fusion detection tools use diverse calling approaches and provide varying results, making selection of the appropriate tool challenging. Ensemble fusion calling techniques appear promising; however, current options have limited accessibility and function. Results MetaFusion is a flexible metacalling tool that amalgamates outputs from any number of fusion callers. Individual caller results are standardized by conversion into the new file type Common Fusion Format. Calls are annotated, merged using graph clustering, filtered and ranked to provide a final output of high-confidence candidates. MetaFusion consistently achieves higher precision and recall than individual callers on real and simulated datasets, and reaches up to 100% precision, indicating that ensemble calling is imperative for high-confidence results. MetaFusion uses FusionAnnotator to annotate calls with information from cancer fusion databases and is provided with a Benchmarking Toolkit to calibrate new callers. Availability and implementation MetaFusion is freely available at https://github.com/ccmbioinfo/MetaFusion. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33944895</pmid><doi>10.1093/bioinformatics/btab249</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8162-8523</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2021-10, Vol.37 (19), p.3144-3151
issn 1367-4803
1367-4811
language eng
recordid cdi_proquest_miscellaneous_2522388886
source Oxford Journals Open Access Collection
title MetaFusion: a high-confidence metacaller for filtering and prioritizing RNA-seq gene fusion candidates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MetaFusion:%20a%20high-confidence%20metacaller%20for%20filtering%20and%20prioritizing%20RNA-seq%20gene%20fusion%20candidates&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Apostolides,%20Michael&rft.date=2021-10-11&rft.volume=37&rft.issue=19&rft.spage=3144&rft.epage=3151&rft.pages=3144-3151&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btab249&rft_dat=%3Cproquest_TOX%3E2522388886%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-b8801dc252d9b81b65db1cbb5fd67d1d465d5a9a1b6d1f0b6c3e266f61fe80183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522388886&rft_id=info:pmid/33944895&rft_oup_id=10.1093/bioinformatics/btab249&rfr_iscdi=true