Loading…
MetaFusion: a high-confidence metacaller for filtering and prioritizing RNA-seq gene fusion candidates
Abstract Motivation Current fusion detection tools use diverse calling approaches and provide varying results, making selection of the appropriate tool challenging. Ensemble fusion calling techniques appear promising; however, current options have limited accessibility and function. Results MetaFusi...
Saved in:
Published in: | Bioinformatics (Oxford, England) England), 2021-10, Vol.37 (19), p.3144-3151 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c401t-b8801dc252d9b81b65db1cbb5fd67d1d465d5a9a1b6d1f0b6c3e266f61fe80183 |
---|---|
cites | cdi_FETCH-LOGICAL-c401t-b8801dc252d9b81b65db1cbb5fd67d1d465d5a9a1b6d1f0b6c3e266f61fe80183 |
container_end_page | 3151 |
container_issue | 19 |
container_start_page | 3144 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 37 |
creator | Apostolides, Michael Jiang, Yue Husić, Mia Siddaway, Robert Hawkins, Cynthia Turinsky, Andrei L Brudno, Michael Ramani, Arun K |
description | Abstract
Motivation
Current fusion detection tools use diverse calling approaches and provide varying results, making selection of the appropriate tool challenging. Ensemble fusion calling techniques appear promising; however, current options have limited accessibility and function.
Results
MetaFusion is a flexible metacalling tool that amalgamates outputs from any number of fusion callers. Individual caller results are standardized by conversion into the new file type Common Fusion Format. Calls are annotated, merged using graph clustering, filtered and ranked to provide a final output of high-confidence candidates. MetaFusion consistently achieves higher precision and recall than individual callers on real and simulated datasets, and reaches up to 100% precision, indicating that ensemble calling is imperative for high-confidence results. MetaFusion uses FusionAnnotator to annotate calls with information from cancer fusion databases and is provided with a Benchmarking Toolkit to calibrate new callers.
Availability and implementation
MetaFusion is freely available at https://github.com/ccmbioinfo/MetaFusion.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btab249 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2522388886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btab249</oup_id><sourcerecordid>2522388886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-b8801dc252d9b81b65db1cbb5fd67d1d465d5a9a1b6d1f0b6c3e266f61fe80183</originalsourceid><addsrcrecordid>eNqNkE1PAjEQhhujEUT_AunRy0q7H2XXGyGiJqiJ0fOmH1Oo2d1C2z3or7cIknizl2lmnvedzIvQmJIbSqpsIow1nbau5cFIPxGBizSvTtCQZmya5CWlp8c_yQbowvsPQkhBCnaOBllW5XlZFUOknyDwRe-N7W4xx2uzWifSdtoo6CTgNk4lbxpwOC7D2jQBnOlWmHcKb5yxzgTztWu8Ps8SD1u8gg6w_jHEMlJG8QD-Ep1p3ni4OtQRel_cvc0fkuXL_eN8tkxkTmhIRFkSqmRapKoSJRWsUIJKIQqt2FRRlcdGwSseJ4pqIpjMIGVMM6ohKstshK73vhtntz34ULfGS2ga3oHtfR2d06yMj0WU7VHprPcOdB3vabn7rCmpdxnXfzOuDxlH4fiwoxctqKPsN9QI0D1g-81_Tb8B-GmRUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522388886</pqid></control><display><type>article</type><title>MetaFusion: a high-confidence metacaller for filtering and prioritizing RNA-seq gene fusion candidates</title><source>Oxford Journals Open Access Collection</source><creator>Apostolides, Michael ; Jiang, Yue ; Husić, Mia ; Siddaway, Robert ; Hawkins, Cynthia ; Turinsky, Andrei L ; Brudno, Michael ; Ramani, Arun K</creator><contributor>Kelso, Janet</contributor><creatorcontrib>Apostolides, Michael ; Jiang, Yue ; Husić, Mia ; Siddaway, Robert ; Hawkins, Cynthia ; Turinsky, Andrei L ; Brudno, Michael ; Ramani, Arun K ; Kelso, Janet</creatorcontrib><description>Abstract
Motivation
Current fusion detection tools use diverse calling approaches and provide varying results, making selection of the appropriate tool challenging. Ensemble fusion calling techniques appear promising; however, current options have limited accessibility and function.
Results
MetaFusion is a flexible metacalling tool that amalgamates outputs from any number of fusion callers. Individual caller results are standardized by conversion into the new file type Common Fusion Format. Calls are annotated, merged using graph clustering, filtered and ranked to provide a final output of high-confidence candidates. MetaFusion consistently achieves higher precision and recall than individual callers on real and simulated datasets, and reaches up to 100% precision, indicating that ensemble calling is imperative for high-confidence results. MetaFusion uses FusionAnnotator to annotate calls with information from cancer fusion databases and is provided with a Benchmarking Toolkit to calibrate new callers.
Availability and implementation
MetaFusion is freely available at https://github.com/ccmbioinfo/MetaFusion.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btab249</identifier><identifier>PMID: 33944895</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Bioinformatics (Oxford, England), 2021-10, Vol.37 (19), p.3144-3151</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-b8801dc252d9b81b65db1cbb5fd67d1d465d5a9a1b6d1f0b6c3e266f61fe80183</citedby><cites>FETCH-LOGICAL-c401t-b8801dc252d9b81b65db1cbb5fd67d1d465d5a9a1b6d1f0b6c3e266f61fe80183</cites><orcidid>0000-0002-8162-8523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btab249$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33944895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kelso, Janet</contributor><creatorcontrib>Apostolides, Michael</creatorcontrib><creatorcontrib>Jiang, Yue</creatorcontrib><creatorcontrib>Husić, Mia</creatorcontrib><creatorcontrib>Siddaway, Robert</creatorcontrib><creatorcontrib>Hawkins, Cynthia</creatorcontrib><creatorcontrib>Turinsky, Andrei L</creatorcontrib><creatorcontrib>Brudno, Michael</creatorcontrib><creatorcontrib>Ramani, Arun K</creatorcontrib><title>MetaFusion: a high-confidence metacaller for filtering and prioritizing RNA-seq gene fusion candidates</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Current fusion detection tools use diverse calling approaches and provide varying results, making selection of the appropriate tool challenging. Ensemble fusion calling techniques appear promising; however, current options have limited accessibility and function.
Results
MetaFusion is a flexible metacalling tool that amalgamates outputs from any number of fusion callers. Individual caller results are standardized by conversion into the new file type Common Fusion Format. Calls are annotated, merged using graph clustering, filtered and ranked to provide a final output of high-confidence candidates. MetaFusion consistently achieves higher precision and recall than individual callers on real and simulated datasets, and reaches up to 100% precision, indicating that ensemble calling is imperative for high-confidence results. MetaFusion uses FusionAnnotator to annotate calls with information from cancer fusion databases and is provided with a Benchmarking Toolkit to calibrate new callers.
Availability and implementation
MetaFusion is freely available at https://github.com/ccmbioinfo/MetaFusion.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PAjEQhhujEUT_AunRy0q7H2XXGyGiJqiJ0fOmH1Oo2d1C2z3or7cIknizl2lmnvedzIvQmJIbSqpsIow1nbau5cFIPxGBizSvTtCQZmya5CWlp8c_yQbowvsPQkhBCnaOBllW5XlZFUOknyDwRe-N7W4xx2uzWifSdtoo6CTgNk4lbxpwOC7D2jQBnOlWmHcKb5yxzgTztWu8Ps8SD1u8gg6w_jHEMlJG8QD-Ep1p3ni4OtQRel_cvc0fkuXL_eN8tkxkTmhIRFkSqmRapKoSJRWsUIJKIQqt2FRRlcdGwSseJ4pqIpjMIGVMM6ohKstshK73vhtntz34ULfGS2ga3oHtfR2d06yMj0WU7VHprPcOdB3vabn7rCmpdxnXfzOuDxlH4fiwoxctqKPsN9QI0D1g-81_Tb8B-GmRUg</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Apostolides, Michael</creator><creator>Jiang, Yue</creator><creator>Husić, Mia</creator><creator>Siddaway, Robert</creator><creator>Hawkins, Cynthia</creator><creator>Turinsky, Andrei L</creator><creator>Brudno, Michael</creator><creator>Ramani, Arun K</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8162-8523</orcidid></search><sort><creationdate>20211011</creationdate><title>MetaFusion: a high-confidence metacaller for filtering and prioritizing RNA-seq gene fusion candidates</title><author>Apostolides, Michael ; Jiang, Yue ; Husić, Mia ; Siddaway, Robert ; Hawkins, Cynthia ; Turinsky, Andrei L ; Brudno, Michael ; Ramani, Arun K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-b8801dc252d9b81b65db1cbb5fd67d1d465d5a9a1b6d1f0b6c3e266f61fe80183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apostolides, Michael</creatorcontrib><creatorcontrib>Jiang, Yue</creatorcontrib><creatorcontrib>Husić, Mia</creatorcontrib><creatorcontrib>Siddaway, Robert</creatorcontrib><creatorcontrib>Hawkins, Cynthia</creatorcontrib><creatorcontrib>Turinsky, Andrei L</creatorcontrib><creatorcontrib>Brudno, Michael</creatorcontrib><creatorcontrib>Ramani, Arun K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Apostolides, Michael</au><au>Jiang, Yue</au><au>Husić, Mia</au><au>Siddaway, Robert</au><au>Hawkins, Cynthia</au><au>Turinsky, Andrei L</au><au>Brudno, Michael</au><au>Ramani, Arun K</au><au>Kelso, Janet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MetaFusion: a high-confidence metacaller for filtering and prioritizing RNA-seq gene fusion candidates</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2021-10-11</date><risdate>2021</risdate><volume>37</volume><issue>19</issue><spage>3144</spage><epage>3151</epage><pages>3144-3151</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Current fusion detection tools use diverse calling approaches and provide varying results, making selection of the appropriate tool challenging. Ensemble fusion calling techniques appear promising; however, current options have limited accessibility and function.
Results
MetaFusion is a flexible metacalling tool that amalgamates outputs from any number of fusion callers. Individual caller results are standardized by conversion into the new file type Common Fusion Format. Calls are annotated, merged using graph clustering, filtered and ranked to provide a final output of high-confidence candidates. MetaFusion consistently achieves higher precision and recall than individual callers on real and simulated datasets, and reaches up to 100% precision, indicating that ensemble calling is imperative for high-confidence results. MetaFusion uses FusionAnnotator to annotate calls with information from cancer fusion databases and is provided with a Benchmarking Toolkit to calibrate new callers.
Availability and implementation
MetaFusion is freely available at https://github.com/ccmbioinfo/MetaFusion.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33944895</pmid><doi>10.1093/bioinformatics/btab249</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8162-8523</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2021-10, Vol.37 (19), p.3144-3151 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_2522388886 |
source | Oxford Journals Open Access Collection |
title | MetaFusion: a high-confidence metacaller for filtering and prioritizing RNA-seq gene fusion candidates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MetaFusion:%20a%20high-confidence%20metacaller%20for%20filtering%20and%20prioritizing%20RNA-seq%20gene%20fusion%20candidates&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Apostolides,%20Michael&rft.date=2021-10-11&rft.volume=37&rft.issue=19&rft.spage=3144&rft.epage=3151&rft.pages=3144-3151&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btab249&rft_dat=%3Cproquest_TOX%3E2522388886%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-b8801dc252d9b81b65db1cbb5fd67d1d465d5a9a1b6d1f0b6c3e266f61fe80183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522388886&rft_id=info:pmid/33944895&rft_oup_id=10.1093/bioinformatics/btab249&rfr_iscdi=true |