Loading…

Multifunctional graphene-based nanocomposites for simultaneous enhanced photocatalytic degradation and photothermal antibacterial activity by visible light

A new strategy for the wastewater treatment was proposed by combining polyvinylpyrrolidone-functionalized silver nanoparticles with reduced graphene oxide (AgNPs-PVP@rGO) as a visible light-triggered photoactive nanocomposite. The nanocomposite with enhanced photocatalytic degradation and phototherm...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2021-09, Vol.28 (36), p.49880-49888
Main Authors: Lv, Ya-kun, Mei, Lin, Zhang, Liu-xue, Yang, De-hong, Yin, Zi-yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new strategy for the wastewater treatment was proposed by combining polyvinylpyrrolidone-functionalized silver nanoparticles with reduced graphene oxide (AgNPs-PVP@rGO) as a visible light-triggered photoactive nanocomposite. The nanocomposite with enhanced photocatalytic degradation and photothermal antibacterial activity can simultaneously decrease the content of organic pollutants and bacteria in the wastewater under visible light irradiation. The efficiency of photocatalytic degradation can be significantly improved by the conjugation of AgNPs onto the rGO surface. The water solubility and dispersion of nanocomposite can be increased via PVP functionalization, without stirring during the photocatalytic process. Under the optimal synthesis condition, AgNPs-PVP@rGO has a photocatalytic degradation efficiency of 90.1% for rhodamine B, which is 6.9 and 1.8 times higher than that of polyvinylpyrrolidone-functionalized silver nanoparticles and rGO alone, respectively. More importantly, the degradation efficiency of optimal AgNPs-PVP@rGO sol on rhodamine B is significantly higher than that of its block suspension in the same amount, indicating that the sol with more specific surface area is conducive to the photocatalytic reaction. Meanwhile, the AgNPs-PVP@rGO with excellent photothermal activity can effectively inhibit the bacterial growth. This functional modification of graphene provides a new strategy for simultaneous treatment of multiple pollutants in wastewater. Graphical abstract The AgNPs-PVP@rGO nanocomposites for simultaneous enhanced photocatalytic degradation and photothermal antibacterial activity by visible light.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-021-14199-5