Loading…

Cannabis and its cannabinoids analysis by gas chromatography–mass spectrometry with Cold EI

Cannabis extracts and products were analyzed by gas chromatography–mass spectrometry (GC–MS) with Cold EI for their full content including terpenes, sesquiterpenes, sesquiterpinols, fatty acids, delta 9‐tetrahydrocannabinol (THC), cannabidiol (CBD), other cannabinoids, hydrocarbons, sterols, diglyce...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mass spectrometry. 2021-06, Vol.56 (6), p.e4726-n/a
Main Authors: Amirav, Aviv, Neumark, Benny, Margolin Eren, Ksenia J., Fialkov, Alexander B., Tal, Noam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3866-765e145e47fb0a61d4dadb73b7420ec86e56b871b4301d951b6fa63005a9021e3
cites cdi_FETCH-LOGICAL-c3866-765e145e47fb0a61d4dadb73b7420ec86e56b871b4301d951b6fa63005a9021e3
container_end_page n/a
container_issue 6
container_start_page e4726
container_title Journal of mass spectrometry.
container_volume 56
creator Amirav, Aviv
Neumark, Benny
Margolin Eren, Ksenia J.
Fialkov, Alexander B.
Tal, Noam
description Cannabis extracts and products were analyzed by gas chromatography–mass spectrometry (GC–MS) with Cold EI for their full content including terpenes, sesquiterpenes, sesquiterpinols, fatty acids, delta 9‐tetrahydrocannabinol (THC), cannabidiol (CBD), other cannabinoids, hydrocarbons, sterols, diglycerides, triglycerides, and impurities. GC–MS with Cold EI is based on interfacing GC and MS with supersonic molecular beams (SMB) along with electron ionization of vibrationally cold sample compounds in the SMB in a fly‐through ion source (hence the name Cold EI). GC–MS with Cold EI improves all the performance aspects of GC–MS, enables the analysis of Cannabinoids with OH groups without derivatization, while providing enhanced molecular ions for improved identification, and enables internal quantitation without calibration. We found over 50 cannabinoid compounds including a new one with a Cold EI mass spectrum very similar to delta 9‐THC as well as relatively large cannabinoids with molecular weight above m/z = 400. Because the analysis was universal in full scan and not targeted, we found impurities such as bromo CBD and fluticasone propionate and could monitor the formation of oxidized CBD during decarboxylation. In addition, GC–MS with Cold EI enabled nontargeted full analysis of terpenes, sesquiterpenes, and sesquiterpinols in cannabis extracts with good internal quantitation. GC–MS with Cold EI further served with very good sensitivity for the concentration determination of delta 9‐THC in CBD‐related products. Finally, cannabis drugs such as EP‐1 used in Israel for treatment of epilepsy and for children with autism spectrum disorder (ASD) were analyzed for their full cannabinoids content for learning on the entourage effect and for drug activity optimization.
doi_str_mv 10.1002/jms.4726
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2522621364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522621364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3866-765e145e47fb0a61d4dadb73b7420ec86e56b871b4301d951b6fa63005a9021e3</originalsourceid><addsrcrecordid>eNp1kMtKw0AUhgdRbK2CTyABN25S5z7JUkLVSsWFupQwk0zalNycSSjZ-Q6-oU_ixFYFwdU5nP_jg_MDcIrgFEGIL9elnVKB-R4YIxhyPwyCYH_YBfcZEnQEjqxdQwjDkPJDMCIkZAyGwRi8RLKqpMqtJ6vUy1vrJdtDVefpcJRFb12qem8pXbgydSnbemlks-o_3t5Laa1nG520LtCt6b1N3q68qC5SbzY_BgeZLKw-2c0JeL6ePUW3_uLhZh5dLfyEBJz7gjONKNNUZApKjlKaylQJogTFUCcB14yrQCBFCURpyJDimeQEQiZDiJEmE3Cx9Tamfu20beMyt4kuClnpurMxZhhzjAinDj3_g67rzrg3B8rVApHA5FeYmNpao7O4MXkpTR8jGA-Vx67yeKjcoWc7YadKnf6A3x07wN8Cm7zQ_b-i-O7-8Uv4CUdRiqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539501723</pqid></control><display><type>article</type><title>Cannabis and its cannabinoids analysis by gas chromatography–mass spectrometry with Cold EI</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Amirav, Aviv ; Neumark, Benny ; Margolin Eren, Ksenia J. ; Fialkov, Alexander B. ; Tal, Noam</creator><creatorcontrib>Amirav, Aviv ; Neumark, Benny ; Margolin Eren, Ksenia J. ; Fialkov, Alexander B. ; Tal, Noam</creatorcontrib><description>Cannabis extracts and products were analyzed by gas chromatography–mass spectrometry (GC–MS) with Cold EI for their full content including terpenes, sesquiterpenes, sesquiterpinols, fatty acids, delta 9‐tetrahydrocannabinol (THC), cannabidiol (CBD), other cannabinoids, hydrocarbons, sterols, diglycerides, triglycerides, and impurities. GC–MS with Cold EI is based on interfacing GC and MS with supersonic molecular beams (SMB) along with electron ionization of vibrationally cold sample compounds in the SMB in a fly‐through ion source (hence the name Cold EI). GC–MS with Cold EI improves all the performance aspects of GC–MS, enables the analysis of Cannabinoids with OH groups without derivatization, while providing enhanced molecular ions for improved identification, and enables internal quantitation without calibration. We found over 50 cannabinoid compounds including a new one with a Cold EI mass spectrum very similar to delta 9‐THC as well as relatively large cannabinoids with molecular weight above m/z = 400. Because the analysis was universal in full scan and not targeted, we found impurities such as bromo CBD and fluticasone propionate and could monitor the formation of oxidized CBD during decarboxylation. In addition, GC–MS with Cold EI enabled nontargeted full analysis of terpenes, sesquiterpenes, and sesquiterpinols in cannabis extracts with good internal quantitation. GC–MS with Cold EI further served with very good sensitivity for the concentration determination of delta 9‐THC in CBD‐related products. Finally, cannabis drugs such as EP‐1 used in Israel for treatment of epilepsy and for children with autism spectrum disorder (ASD) were analyzed for their full cannabinoids content for learning on the entourage effect and for drug activity optimization.</description><identifier>ISSN: 1076-5174</identifier><identifier>EISSN: 1096-9888</identifier><identifier>DOI: 10.1002/jms.4726</identifier><identifier>PMID: 33955098</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Analysis ; Autism ; Calibration ; Cannabidiol ; Cannabinoids ; Cannabis ; Chromatography ; Cold ; Cold EI ; Decarboxylation ; Diglycerides ; Drug abuse ; Electron beams ; Epilepsy ; Fatty acids ; Fluticasone ; Gas chromatography ; GC–MS ; GC–MS with Cold EI ; Hydrocarbons ; Impurities ; Ion sources ; Ionization ; Ions ; Marijuana ; Mass spectrometry ; Mass spectroscopy ; Molecular beams ; Molecular ions ; Molecular weight ; Optimization ; Propionic acid ; Quantitation ; Scientific imaging ; Sesquiterpenes ; Spectroscopy ; Sterols ; supersonic molecular beams ; Terpenes ; Tetrahydrocannabinol ; THC ; Triglycerides</subject><ispartof>Journal of mass spectrometry., 2021-06, Vol.56 (6), p.e4726-n/a</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3866-765e145e47fb0a61d4dadb73b7420ec86e56b871b4301d951b6fa63005a9021e3</citedby><cites>FETCH-LOGICAL-c3866-765e145e47fb0a61d4dadb73b7420ec86e56b871b4301d951b6fa63005a9021e3</cites><orcidid>0000-0003-4982-7984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33955098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amirav, Aviv</creatorcontrib><creatorcontrib>Neumark, Benny</creatorcontrib><creatorcontrib>Margolin Eren, Ksenia J.</creatorcontrib><creatorcontrib>Fialkov, Alexander B.</creatorcontrib><creatorcontrib>Tal, Noam</creatorcontrib><title>Cannabis and its cannabinoids analysis by gas chromatography–mass spectrometry with Cold EI</title><title>Journal of mass spectrometry.</title><addtitle>J Mass Spectrom</addtitle><description>Cannabis extracts and products were analyzed by gas chromatography–mass spectrometry (GC–MS) with Cold EI for their full content including terpenes, sesquiterpenes, sesquiterpinols, fatty acids, delta 9‐tetrahydrocannabinol (THC), cannabidiol (CBD), other cannabinoids, hydrocarbons, sterols, diglycerides, triglycerides, and impurities. GC–MS with Cold EI is based on interfacing GC and MS with supersonic molecular beams (SMB) along with electron ionization of vibrationally cold sample compounds in the SMB in a fly‐through ion source (hence the name Cold EI). GC–MS with Cold EI improves all the performance aspects of GC–MS, enables the analysis of Cannabinoids with OH groups without derivatization, while providing enhanced molecular ions for improved identification, and enables internal quantitation without calibration. We found over 50 cannabinoid compounds including a new one with a Cold EI mass spectrum very similar to delta 9‐THC as well as relatively large cannabinoids with molecular weight above m/z = 400. Because the analysis was universal in full scan and not targeted, we found impurities such as bromo CBD and fluticasone propionate and could monitor the formation of oxidized CBD during decarboxylation. In addition, GC–MS with Cold EI enabled nontargeted full analysis of terpenes, sesquiterpenes, and sesquiterpinols in cannabis extracts with good internal quantitation. GC–MS with Cold EI further served with very good sensitivity for the concentration determination of delta 9‐THC in CBD‐related products. Finally, cannabis drugs such as EP‐1 used in Israel for treatment of epilepsy and for children with autism spectrum disorder (ASD) were analyzed for their full cannabinoids content for learning on the entourage effect and for drug activity optimization.</description><subject>Analysis</subject><subject>Autism</subject><subject>Calibration</subject><subject>Cannabidiol</subject><subject>Cannabinoids</subject><subject>Cannabis</subject><subject>Chromatography</subject><subject>Cold</subject><subject>Cold EI</subject><subject>Decarboxylation</subject><subject>Diglycerides</subject><subject>Drug abuse</subject><subject>Electron beams</subject><subject>Epilepsy</subject><subject>Fatty acids</subject><subject>Fluticasone</subject><subject>Gas chromatography</subject><subject>GC–MS</subject><subject>GC–MS with Cold EI</subject><subject>Hydrocarbons</subject><subject>Impurities</subject><subject>Ion sources</subject><subject>Ionization</subject><subject>Ions</subject><subject>Marijuana</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Molecular beams</subject><subject>Molecular ions</subject><subject>Molecular weight</subject><subject>Optimization</subject><subject>Propionic acid</subject><subject>Quantitation</subject><subject>Scientific imaging</subject><subject>Sesquiterpenes</subject><subject>Spectroscopy</subject><subject>Sterols</subject><subject>supersonic molecular beams</subject><subject>Terpenes</subject><subject>Tetrahydrocannabinol</subject><subject>THC</subject><subject>Triglycerides</subject><issn>1076-5174</issn><issn>1096-9888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKw0AUhgdRbK2CTyABN25S5z7JUkLVSsWFupQwk0zalNycSSjZ-Q6-oU_ixFYFwdU5nP_jg_MDcIrgFEGIL9elnVKB-R4YIxhyPwyCYH_YBfcZEnQEjqxdQwjDkPJDMCIkZAyGwRi8RLKqpMqtJ6vUy1vrJdtDVefpcJRFb12qem8pXbgydSnbemlks-o_3t5Laa1nG520LtCt6b1N3q68qC5SbzY_BgeZLKw-2c0JeL6ePUW3_uLhZh5dLfyEBJz7gjONKNNUZApKjlKaylQJogTFUCcB14yrQCBFCURpyJDimeQEQiZDiJEmE3Cx9Tamfu20beMyt4kuClnpurMxZhhzjAinDj3_g67rzrg3B8rVApHA5FeYmNpao7O4MXkpTR8jGA-Vx67yeKjcoWc7YadKnf6A3x07wN8Cm7zQ_b-i-O7-8Uv4CUdRiqk</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Amirav, Aviv</creator><creator>Neumark, Benny</creator><creator>Margolin Eren, Ksenia J.</creator><creator>Fialkov, Alexander B.</creator><creator>Tal, Noam</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4982-7984</orcidid></search><sort><creationdate>202106</creationdate><title>Cannabis and its cannabinoids analysis by gas chromatography–mass spectrometry with Cold EI</title><author>Amirav, Aviv ; Neumark, Benny ; Margolin Eren, Ksenia J. ; Fialkov, Alexander B. ; Tal, Noam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3866-765e145e47fb0a61d4dadb73b7420ec86e56b871b4301d951b6fa63005a9021e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Autism</topic><topic>Calibration</topic><topic>Cannabidiol</topic><topic>Cannabinoids</topic><topic>Cannabis</topic><topic>Chromatography</topic><topic>Cold</topic><topic>Cold EI</topic><topic>Decarboxylation</topic><topic>Diglycerides</topic><topic>Drug abuse</topic><topic>Electron beams</topic><topic>Epilepsy</topic><topic>Fatty acids</topic><topic>Fluticasone</topic><topic>Gas chromatography</topic><topic>GC–MS</topic><topic>GC–MS with Cold EI</topic><topic>Hydrocarbons</topic><topic>Impurities</topic><topic>Ion sources</topic><topic>Ionization</topic><topic>Ions</topic><topic>Marijuana</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Molecular beams</topic><topic>Molecular ions</topic><topic>Molecular weight</topic><topic>Optimization</topic><topic>Propionic acid</topic><topic>Quantitation</topic><topic>Scientific imaging</topic><topic>Sesquiterpenes</topic><topic>Spectroscopy</topic><topic>Sterols</topic><topic>supersonic molecular beams</topic><topic>Terpenes</topic><topic>Tetrahydrocannabinol</topic><topic>THC</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amirav, Aviv</creatorcontrib><creatorcontrib>Neumark, Benny</creatorcontrib><creatorcontrib>Margolin Eren, Ksenia J.</creatorcontrib><creatorcontrib>Fialkov, Alexander B.</creatorcontrib><creatorcontrib>Tal, Noam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mass spectrometry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amirav, Aviv</au><au>Neumark, Benny</au><au>Margolin Eren, Ksenia J.</au><au>Fialkov, Alexander B.</au><au>Tal, Noam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cannabis and its cannabinoids analysis by gas chromatography–mass spectrometry with Cold EI</atitle><jtitle>Journal of mass spectrometry.</jtitle><addtitle>J Mass Spectrom</addtitle><date>2021-06</date><risdate>2021</risdate><volume>56</volume><issue>6</issue><spage>e4726</spage><epage>n/a</epage><pages>e4726-n/a</pages><issn>1076-5174</issn><eissn>1096-9888</eissn><abstract>Cannabis extracts and products were analyzed by gas chromatography–mass spectrometry (GC–MS) with Cold EI for their full content including terpenes, sesquiterpenes, sesquiterpinols, fatty acids, delta 9‐tetrahydrocannabinol (THC), cannabidiol (CBD), other cannabinoids, hydrocarbons, sterols, diglycerides, triglycerides, and impurities. GC–MS with Cold EI is based on interfacing GC and MS with supersonic molecular beams (SMB) along with electron ionization of vibrationally cold sample compounds in the SMB in a fly‐through ion source (hence the name Cold EI). GC–MS with Cold EI improves all the performance aspects of GC–MS, enables the analysis of Cannabinoids with OH groups without derivatization, while providing enhanced molecular ions for improved identification, and enables internal quantitation without calibration. We found over 50 cannabinoid compounds including a new one with a Cold EI mass spectrum very similar to delta 9‐THC as well as relatively large cannabinoids with molecular weight above m/z = 400. Because the analysis was universal in full scan and not targeted, we found impurities such as bromo CBD and fluticasone propionate and could monitor the formation of oxidized CBD during decarboxylation. In addition, GC–MS with Cold EI enabled nontargeted full analysis of terpenes, sesquiterpenes, and sesquiterpinols in cannabis extracts with good internal quantitation. GC–MS with Cold EI further served with very good sensitivity for the concentration determination of delta 9‐THC in CBD‐related products. Finally, cannabis drugs such as EP‐1 used in Israel for treatment of epilepsy and for children with autism spectrum disorder (ASD) were analyzed for their full cannabinoids content for learning on the entourage effect and for drug activity optimization.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33955098</pmid><doi>10.1002/jms.4726</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4982-7984</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1076-5174
ispartof Journal of mass spectrometry., 2021-06, Vol.56 (6), p.e4726-n/a
issn 1076-5174
1096-9888
language eng
recordid cdi_proquest_miscellaneous_2522621364
source Wiley-Blackwell Read & Publish Collection
subjects Analysis
Autism
Calibration
Cannabidiol
Cannabinoids
Cannabis
Chromatography
Cold
Cold EI
Decarboxylation
Diglycerides
Drug abuse
Electron beams
Epilepsy
Fatty acids
Fluticasone
Gas chromatography
GC–MS
GC–MS with Cold EI
Hydrocarbons
Impurities
Ion sources
Ionization
Ions
Marijuana
Mass spectrometry
Mass spectroscopy
Molecular beams
Molecular ions
Molecular weight
Optimization
Propionic acid
Quantitation
Scientific imaging
Sesquiterpenes
Spectroscopy
Sterols
supersonic molecular beams
Terpenes
Tetrahydrocannabinol
THC
Triglycerides
title Cannabis and its cannabinoids analysis by gas chromatography–mass spectrometry with Cold EI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cannabis%20and%20its%20cannabinoids%20analysis%20by%20gas%20chromatography%E2%80%93mass%20spectrometry%20with%20Cold%20EI&rft.jtitle=Journal%20of%20mass%20spectrometry.&rft.au=Amirav,%20Aviv&rft.date=2021-06&rft.volume=56&rft.issue=6&rft.spage=e4726&rft.epage=n/a&rft.pages=e4726-n/a&rft.issn=1076-5174&rft.eissn=1096-9888&rft_id=info:doi/10.1002/jms.4726&rft_dat=%3Cproquest_cross%3E2522621364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3866-765e145e47fb0a61d4dadb73b7420ec86e56b871b4301d951b6fa63005a9021e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539501723&rft_id=info:pmid/33955098&rfr_iscdi=true