Loading…
Cannabis and its cannabinoids analysis by gas chromatography–mass spectrometry with Cold EI
Cannabis extracts and products were analyzed by gas chromatography–mass spectrometry (GC–MS) with Cold EI for their full content including terpenes, sesquiterpenes, sesquiterpinols, fatty acids, delta 9‐tetrahydrocannabinol (THC), cannabidiol (CBD), other cannabinoids, hydrocarbons, sterols, diglyce...
Saved in:
Published in: | Journal of mass spectrometry. 2021-06, Vol.56 (6), p.e4726-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3866-765e145e47fb0a61d4dadb73b7420ec86e56b871b4301d951b6fa63005a9021e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3866-765e145e47fb0a61d4dadb73b7420ec86e56b871b4301d951b6fa63005a9021e3 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | e4726 |
container_title | Journal of mass spectrometry. |
container_volume | 56 |
creator | Amirav, Aviv Neumark, Benny Margolin Eren, Ksenia J. Fialkov, Alexander B. Tal, Noam |
description | Cannabis extracts and products were analyzed by gas chromatography–mass spectrometry (GC–MS) with Cold EI for their full content including terpenes, sesquiterpenes, sesquiterpinols, fatty acids, delta 9‐tetrahydrocannabinol (THC), cannabidiol (CBD), other cannabinoids, hydrocarbons, sterols, diglycerides, triglycerides, and impurities. GC–MS with Cold EI is based on interfacing GC and MS with supersonic molecular beams (SMB) along with electron ionization of vibrationally cold sample compounds in the SMB in a fly‐through ion source (hence the name Cold EI). GC–MS with Cold EI improves all the performance aspects of GC–MS, enables the analysis of Cannabinoids with OH groups without derivatization, while providing enhanced molecular ions for improved identification, and enables internal quantitation without calibration. We found over 50 cannabinoid compounds including a new one with a Cold EI mass spectrum very similar to delta 9‐THC as well as relatively large cannabinoids with molecular weight above m/z = 400. Because the analysis was universal in full scan and not targeted, we found impurities such as bromo CBD and fluticasone propionate and could monitor the formation of oxidized CBD during decarboxylation. In addition, GC–MS with Cold EI enabled nontargeted full analysis of terpenes, sesquiterpenes, and sesquiterpinols in cannabis extracts with good internal quantitation. GC–MS with Cold EI further served with very good sensitivity for the concentration determination of delta 9‐THC in CBD‐related products. Finally, cannabis drugs such as EP‐1 used in Israel for treatment of epilepsy and for children with autism spectrum disorder (ASD) were analyzed for their full cannabinoids content for learning on the entourage effect and for drug activity optimization. |
doi_str_mv | 10.1002/jms.4726 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2522621364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522621364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3866-765e145e47fb0a61d4dadb73b7420ec86e56b871b4301d951b6fa63005a9021e3</originalsourceid><addsrcrecordid>eNp1kMtKw0AUhgdRbK2CTyABN25S5z7JUkLVSsWFupQwk0zalNycSSjZ-Q6-oU_ixFYFwdU5nP_jg_MDcIrgFEGIL9elnVKB-R4YIxhyPwyCYH_YBfcZEnQEjqxdQwjDkPJDMCIkZAyGwRi8RLKqpMqtJ6vUy1vrJdtDVefpcJRFb12qem8pXbgydSnbemlks-o_3t5Laa1nG520LtCt6b1N3q68qC5SbzY_BgeZLKw-2c0JeL6ePUW3_uLhZh5dLfyEBJz7gjONKNNUZApKjlKaylQJogTFUCcB14yrQCBFCURpyJDimeQEQiZDiJEmE3Cx9Tamfu20beMyt4kuClnpurMxZhhzjAinDj3_g67rzrg3B8rVApHA5FeYmNpao7O4MXkpTR8jGA-Vx67yeKjcoWc7YadKnf6A3x07wN8Cm7zQ_b-i-O7-8Uv4CUdRiqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539501723</pqid></control><display><type>article</type><title>Cannabis and its cannabinoids analysis by gas chromatography–mass spectrometry with Cold EI</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Amirav, Aviv ; Neumark, Benny ; Margolin Eren, Ksenia J. ; Fialkov, Alexander B. ; Tal, Noam</creator><creatorcontrib>Amirav, Aviv ; Neumark, Benny ; Margolin Eren, Ksenia J. ; Fialkov, Alexander B. ; Tal, Noam</creatorcontrib><description>Cannabis extracts and products were analyzed by gas chromatography–mass spectrometry (GC–MS) with Cold EI for their full content including terpenes, sesquiterpenes, sesquiterpinols, fatty acids, delta 9‐tetrahydrocannabinol (THC), cannabidiol (CBD), other cannabinoids, hydrocarbons, sterols, diglycerides, triglycerides, and impurities. GC–MS with Cold EI is based on interfacing GC and MS with supersonic molecular beams (SMB) along with electron ionization of vibrationally cold sample compounds in the SMB in a fly‐through ion source (hence the name Cold EI). GC–MS with Cold EI improves all the performance aspects of GC–MS, enables the analysis of Cannabinoids with OH groups without derivatization, while providing enhanced molecular ions for improved identification, and enables internal quantitation without calibration. We found over 50 cannabinoid compounds including a new one with a Cold EI mass spectrum very similar to delta 9‐THC as well as relatively large cannabinoids with molecular weight above m/z = 400. Because the analysis was universal in full scan and not targeted, we found impurities such as bromo CBD and fluticasone propionate and could monitor the formation of oxidized CBD during decarboxylation. In addition, GC–MS with Cold EI enabled nontargeted full analysis of terpenes, sesquiterpenes, and sesquiterpinols in cannabis extracts with good internal quantitation. GC–MS with Cold EI further served with very good sensitivity for the concentration determination of delta 9‐THC in CBD‐related products. Finally, cannabis drugs such as EP‐1 used in Israel for treatment of epilepsy and for children with autism spectrum disorder (ASD) were analyzed for their full cannabinoids content for learning on the entourage effect and for drug activity optimization.</description><identifier>ISSN: 1076-5174</identifier><identifier>EISSN: 1096-9888</identifier><identifier>DOI: 10.1002/jms.4726</identifier><identifier>PMID: 33955098</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Analysis ; Autism ; Calibration ; Cannabidiol ; Cannabinoids ; Cannabis ; Chromatography ; Cold ; Cold EI ; Decarboxylation ; Diglycerides ; Drug abuse ; Electron beams ; Epilepsy ; Fatty acids ; Fluticasone ; Gas chromatography ; GC–MS ; GC–MS with Cold EI ; Hydrocarbons ; Impurities ; Ion sources ; Ionization ; Ions ; Marijuana ; Mass spectrometry ; Mass spectroscopy ; Molecular beams ; Molecular ions ; Molecular weight ; Optimization ; Propionic acid ; Quantitation ; Scientific imaging ; Sesquiterpenes ; Spectroscopy ; Sterols ; supersonic molecular beams ; Terpenes ; Tetrahydrocannabinol ; THC ; Triglycerides</subject><ispartof>Journal of mass spectrometry., 2021-06, Vol.56 (6), p.e4726-n/a</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3866-765e145e47fb0a61d4dadb73b7420ec86e56b871b4301d951b6fa63005a9021e3</citedby><cites>FETCH-LOGICAL-c3866-765e145e47fb0a61d4dadb73b7420ec86e56b871b4301d951b6fa63005a9021e3</cites><orcidid>0000-0003-4982-7984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33955098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amirav, Aviv</creatorcontrib><creatorcontrib>Neumark, Benny</creatorcontrib><creatorcontrib>Margolin Eren, Ksenia J.</creatorcontrib><creatorcontrib>Fialkov, Alexander B.</creatorcontrib><creatorcontrib>Tal, Noam</creatorcontrib><title>Cannabis and its cannabinoids analysis by gas chromatography–mass spectrometry with Cold EI</title><title>Journal of mass spectrometry.</title><addtitle>J Mass Spectrom</addtitle><description>Cannabis extracts and products were analyzed by gas chromatography–mass spectrometry (GC–MS) with Cold EI for their full content including terpenes, sesquiterpenes, sesquiterpinols, fatty acids, delta 9‐tetrahydrocannabinol (THC), cannabidiol (CBD), other cannabinoids, hydrocarbons, sterols, diglycerides, triglycerides, and impurities. GC–MS with Cold EI is based on interfacing GC and MS with supersonic molecular beams (SMB) along with electron ionization of vibrationally cold sample compounds in the SMB in a fly‐through ion source (hence the name Cold EI). GC–MS with Cold EI improves all the performance aspects of GC–MS, enables the analysis of Cannabinoids with OH groups without derivatization, while providing enhanced molecular ions for improved identification, and enables internal quantitation without calibration. We found over 50 cannabinoid compounds including a new one with a Cold EI mass spectrum very similar to delta 9‐THC as well as relatively large cannabinoids with molecular weight above m/z = 400. Because the analysis was universal in full scan and not targeted, we found impurities such as bromo CBD and fluticasone propionate and could monitor the formation of oxidized CBD during decarboxylation. In addition, GC–MS with Cold EI enabled nontargeted full analysis of terpenes, sesquiterpenes, and sesquiterpinols in cannabis extracts with good internal quantitation. GC–MS with Cold EI further served with very good sensitivity for the concentration determination of delta 9‐THC in CBD‐related products. Finally, cannabis drugs such as EP‐1 used in Israel for treatment of epilepsy and for children with autism spectrum disorder (ASD) were analyzed for their full cannabinoids content for learning on the entourage effect and for drug activity optimization.</description><subject>Analysis</subject><subject>Autism</subject><subject>Calibration</subject><subject>Cannabidiol</subject><subject>Cannabinoids</subject><subject>Cannabis</subject><subject>Chromatography</subject><subject>Cold</subject><subject>Cold EI</subject><subject>Decarboxylation</subject><subject>Diglycerides</subject><subject>Drug abuse</subject><subject>Electron beams</subject><subject>Epilepsy</subject><subject>Fatty acids</subject><subject>Fluticasone</subject><subject>Gas chromatography</subject><subject>GC–MS</subject><subject>GC–MS with Cold EI</subject><subject>Hydrocarbons</subject><subject>Impurities</subject><subject>Ion sources</subject><subject>Ionization</subject><subject>Ions</subject><subject>Marijuana</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Molecular beams</subject><subject>Molecular ions</subject><subject>Molecular weight</subject><subject>Optimization</subject><subject>Propionic acid</subject><subject>Quantitation</subject><subject>Scientific imaging</subject><subject>Sesquiterpenes</subject><subject>Spectroscopy</subject><subject>Sterols</subject><subject>supersonic molecular beams</subject><subject>Terpenes</subject><subject>Tetrahydrocannabinol</subject><subject>THC</subject><subject>Triglycerides</subject><issn>1076-5174</issn><issn>1096-9888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKw0AUhgdRbK2CTyABN25S5z7JUkLVSsWFupQwk0zalNycSSjZ-Q6-oU_ixFYFwdU5nP_jg_MDcIrgFEGIL9elnVKB-R4YIxhyPwyCYH_YBfcZEnQEjqxdQwjDkPJDMCIkZAyGwRi8RLKqpMqtJ6vUy1vrJdtDVefpcJRFb12qem8pXbgydSnbemlks-o_3t5Laa1nG520LtCt6b1N3q68qC5SbzY_BgeZLKw-2c0JeL6ePUW3_uLhZh5dLfyEBJz7gjONKNNUZApKjlKaylQJogTFUCcB14yrQCBFCURpyJDimeQEQiZDiJEmE3Cx9Tamfu20beMyt4kuClnpurMxZhhzjAinDj3_g67rzrg3B8rVApHA5FeYmNpao7O4MXkpTR8jGA-Vx67yeKjcoWc7YadKnf6A3x07wN8Cm7zQ_b-i-O7-8Uv4CUdRiqk</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Amirav, Aviv</creator><creator>Neumark, Benny</creator><creator>Margolin Eren, Ksenia J.</creator><creator>Fialkov, Alexander B.</creator><creator>Tal, Noam</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4982-7984</orcidid></search><sort><creationdate>202106</creationdate><title>Cannabis and its cannabinoids analysis by gas chromatography–mass spectrometry with Cold EI</title><author>Amirav, Aviv ; Neumark, Benny ; Margolin Eren, Ksenia J. ; Fialkov, Alexander B. ; Tal, Noam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3866-765e145e47fb0a61d4dadb73b7420ec86e56b871b4301d951b6fa63005a9021e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Autism</topic><topic>Calibration</topic><topic>Cannabidiol</topic><topic>Cannabinoids</topic><topic>Cannabis</topic><topic>Chromatography</topic><topic>Cold</topic><topic>Cold EI</topic><topic>Decarboxylation</topic><topic>Diglycerides</topic><topic>Drug abuse</topic><topic>Electron beams</topic><topic>Epilepsy</topic><topic>Fatty acids</topic><topic>Fluticasone</topic><topic>Gas chromatography</topic><topic>GC–MS</topic><topic>GC–MS with Cold EI</topic><topic>Hydrocarbons</topic><topic>Impurities</topic><topic>Ion sources</topic><topic>Ionization</topic><topic>Ions</topic><topic>Marijuana</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Molecular beams</topic><topic>Molecular ions</topic><topic>Molecular weight</topic><topic>Optimization</topic><topic>Propionic acid</topic><topic>Quantitation</topic><topic>Scientific imaging</topic><topic>Sesquiterpenes</topic><topic>Spectroscopy</topic><topic>Sterols</topic><topic>supersonic molecular beams</topic><topic>Terpenes</topic><topic>Tetrahydrocannabinol</topic><topic>THC</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amirav, Aviv</creatorcontrib><creatorcontrib>Neumark, Benny</creatorcontrib><creatorcontrib>Margolin Eren, Ksenia J.</creatorcontrib><creatorcontrib>Fialkov, Alexander B.</creatorcontrib><creatorcontrib>Tal, Noam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mass spectrometry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amirav, Aviv</au><au>Neumark, Benny</au><au>Margolin Eren, Ksenia J.</au><au>Fialkov, Alexander B.</au><au>Tal, Noam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cannabis and its cannabinoids analysis by gas chromatography–mass spectrometry with Cold EI</atitle><jtitle>Journal of mass spectrometry.</jtitle><addtitle>J Mass Spectrom</addtitle><date>2021-06</date><risdate>2021</risdate><volume>56</volume><issue>6</issue><spage>e4726</spage><epage>n/a</epage><pages>e4726-n/a</pages><issn>1076-5174</issn><eissn>1096-9888</eissn><abstract>Cannabis extracts and products were analyzed by gas chromatography–mass spectrometry (GC–MS) with Cold EI for their full content including terpenes, sesquiterpenes, sesquiterpinols, fatty acids, delta 9‐tetrahydrocannabinol (THC), cannabidiol (CBD), other cannabinoids, hydrocarbons, sterols, diglycerides, triglycerides, and impurities. GC–MS with Cold EI is based on interfacing GC and MS with supersonic molecular beams (SMB) along with electron ionization of vibrationally cold sample compounds in the SMB in a fly‐through ion source (hence the name Cold EI). GC–MS with Cold EI improves all the performance aspects of GC–MS, enables the analysis of Cannabinoids with OH groups without derivatization, while providing enhanced molecular ions for improved identification, and enables internal quantitation without calibration. We found over 50 cannabinoid compounds including a new one with a Cold EI mass spectrum very similar to delta 9‐THC as well as relatively large cannabinoids with molecular weight above m/z = 400. Because the analysis was universal in full scan and not targeted, we found impurities such as bromo CBD and fluticasone propionate and could monitor the formation of oxidized CBD during decarboxylation. In addition, GC–MS with Cold EI enabled nontargeted full analysis of terpenes, sesquiterpenes, and sesquiterpinols in cannabis extracts with good internal quantitation. GC–MS with Cold EI further served with very good sensitivity for the concentration determination of delta 9‐THC in CBD‐related products. Finally, cannabis drugs such as EP‐1 used in Israel for treatment of epilepsy and for children with autism spectrum disorder (ASD) were analyzed for their full cannabinoids content for learning on the entourage effect and for drug activity optimization.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33955098</pmid><doi>10.1002/jms.4726</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4982-7984</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-5174 |
ispartof | Journal of mass spectrometry., 2021-06, Vol.56 (6), p.e4726-n/a |
issn | 1076-5174 1096-9888 |
language | eng |
recordid | cdi_proquest_miscellaneous_2522621364 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Analysis Autism Calibration Cannabidiol Cannabinoids Cannabis Chromatography Cold Cold EI Decarboxylation Diglycerides Drug abuse Electron beams Epilepsy Fatty acids Fluticasone Gas chromatography GC–MS GC–MS with Cold EI Hydrocarbons Impurities Ion sources Ionization Ions Marijuana Mass spectrometry Mass spectroscopy Molecular beams Molecular ions Molecular weight Optimization Propionic acid Quantitation Scientific imaging Sesquiterpenes Spectroscopy Sterols supersonic molecular beams Terpenes Tetrahydrocannabinol THC Triglycerides |
title | Cannabis and its cannabinoids analysis by gas chromatography–mass spectrometry with Cold EI |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cannabis%20and%20its%20cannabinoids%20analysis%20by%20gas%20chromatography%E2%80%93mass%20spectrometry%20with%20Cold%20EI&rft.jtitle=Journal%20of%20mass%20spectrometry.&rft.au=Amirav,%20Aviv&rft.date=2021-06&rft.volume=56&rft.issue=6&rft.spage=e4726&rft.epage=n/a&rft.pages=e4726-n/a&rft.issn=1076-5174&rft.eissn=1096-9888&rft_id=info:doi/10.1002/jms.4726&rft_dat=%3Cproquest_cross%3E2522621364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3866-765e145e47fb0a61d4dadb73b7420ec86e56b871b4301d951b6fa63005a9021e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539501723&rft_id=info:pmid/33955098&rfr_iscdi=true |