Loading…

Molecular dynamics studies of brittle failure in silica: effect of thermal vibrations

The brittle failure of amorphous and crystalline structures of SiO 2 is examined by molecular dynamics (MD) calculations. A number of structure-dependent effects are observed which appear to be associated with the non-crystalline state and relatively insensitive to the exact form of the modeled inte...

Full description

Saved in:
Bibliographic Details
Published in:Journal of non-crystalline solids 1991-03, Vol.128 (1), p.57-68
Main Authors: Ochoa, Romulo, Swiler, Thomas P., Simmons, Joseph H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-2e4d4dfc46bad473ecb2f07e4964b4d2a710bce7c1eb3a2c2e0fa5c77f4878123
cites cdi_FETCH-LOGICAL-c396t-2e4d4dfc46bad473ecb2f07e4964b4d2a710bce7c1eb3a2c2e0fa5c77f4878123
container_end_page 68
container_issue 1
container_start_page 57
container_title Journal of non-crystalline solids
container_volume 128
creator Ochoa, Romulo
Swiler, Thomas P.
Simmons, Joseph H.
description The brittle failure of amorphous and crystalline structures of SiO 2 is examined by molecular dynamics (MD) calculations. A number of structure-dependent effects are observed which appear to be associated with the non-crystalline state and relatively insensitive to the exact form of the modeled interatomic potentials. Brittle failure (fracture) is observed as a peak in the resultant stress from strains applied at a variety of strain rates. The maximum stress of the amorphous structures is strongly strain-rate dependent and nearly independent of total strain. An observed 60% decrease in strength at lower strain rates indicates that the dynamic lattice, due to structural rearrangements from thermal vibrations of the atoms, is much weaker than the static lattice (lattice strained within an acoustic vibration period). At very high strain rates, the glass undergoes failure by an extension of interatomic bonds. At lower strain rates, the rearrangements correspond to a rotation of (SiO 4) 4− tetrahedra in order to increase the SiOSi bond angle in the direction of the applied strain. The crystalline lattice stays near equilibrium at all strain rates beyond the initial straining period; therefore, the stress maximum is nearly independent of strain rate and total strain. In the initial straining period, at low strain rates, the cubic phase of the high cristobalite lattice undergoes a change to tetragonal symmetry through a displacive transformation.
doi_str_mv 10.1016/0022-3093(91)90776-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25276937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022309391907763</els_id><sourcerecordid>25276937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-2e4d4dfc46bad473ecb2f07e4964b4d2a710bce7c1eb3a2c2e0fa5c77f4878123</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwDxi8gGAI-Ctxw4CEKr6kIhY6W87lLIzcpNhJpf57UlrBhrjllud9T_cQcsrZFWe8uGZMiEyyUl6U_LJkWheZ3CMjPtEyUxMu9snoBzkkRyl9sGG0nIzI_KUNCH2wkdbrxi48JJq6vvaYaOtoFX3XBaTO-tBHpL6hyQcP9oaicwjdBureMS5soCtfRdv5tknH5MDZkPBkt8dk_nD_Nn3KZq-Pz9O7WQayLLpMoKpV7UAVla2VlgiVcEyjKgtVqVpYzVkFqIFjJa0AgczZHLR2aqKHv-SYnG97l7H97DF1ZuETYAi2wbZPRuRCF6XU_wKF_gbVFoTYphTRmWX0CxvXhjOzkW02Js3GpCm5-ZZt5BA72_XbBDa4aBvw6Tdb5krmeT5wt1sOBysrj9Ek8NgA1j4ONk3d-r8PfQEja5Pq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25272737</pqid></control><display><type>article</type><title>Molecular dynamics studies of brittle failure in silica: effect of thermal vibrations</title><source>Backfile Package - Materials Science [YMS]</source><creator>Ochoa, Romulo ; Swiler, Thomas P. ; Simmons, Joseph H.</creator><creatorcontrib>Ochoa, Romulo ; Swiler, Thomas P. ; Simmons, Joseph H.</creatorcontrib><description>The brittle failure of amorphous and crystalline structures of SiO 2 is examined by molecular dynamics (MD) calculations. A number of structure-dependent effects are observed which appear to be associated with the non-crystalline state and relatively insensitive to the exact form of the modeled interatomic potentials. Brittle failure (fracture) is observed as a peak in the resultant stress from strains applied at a variety of strain rates. The maximum stress of the amorphous structures is strongly strain-rate dependent and nearly independent of total strain. An observed 60% decrease in strength at lower strain rates indicates that the dynamic lattice, due to structural rearrangements from thermal vibrations of the atoms, is much weaker than the static lattice (lattice strained within an acoustic vibration period). At very high strain rates, the glass undergoes failure by an extension of interatomic bonds. At lower strain rates, the rearrangements correspond to a rotation of (SiO 4) 4− tetrahedra in order to increase the SiOSi bond angle in the direction of the applied strain. The crystalline lattice stays near equilibrium at all strain rates beyond the initial straining period; therefore, the stress maximum is nearly independent of strain rate and total strain. In the initial straining period, at low strain rates, the cubic phase of the high cristobalite lattice undergoes a change to tetragonal symmetry through a displacive transformation.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/0022-3093(91)90776-3</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Fatigue, brittleness, fracture, and cracks ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Physics</subject><ispartof>Journal of non-crystalline solids, 1991-03, Vol.128 (1), p.57-68</ispartof><rights>1991</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-2e4d4dfc46bad473ecb2f07e4964b4d2a710bce7c1eb3a2c2e0fa5c77f4878123</citedby><cites>FETCH-LOGICAL-c396t-2e4d4dfc46bad473ecb2f07e4964b4d2a710bce7c1eb3a2c2e0fa5c77f4878123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0022309391907763$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3555,27924,27925,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19543555$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ochoa, Romulo</creatorcontrib><creatorcontrib>Swiler, Thomas P.</creatorcontrib><creatorcontrib>Simmons, Joseph H.</creatorcontrib><title>Molecular dynamics studies of brittle failure in silica: effect of thermal vibrations</title><title>Journal of non-crystalline solids</title><description>The brittle failure of amorphous and crystalline structures of SiO 2 is examined by molecular dynamics (MD) calculations. A number of structure-dependent effects are observed which appear to be associated with the non-crystalline state and relatively insensitive to the exact form of the modeled interatomic potentials. Brittle failure (fracture) is observed as a peak in the resultant stress from strains applied at a variety of strain rates. The maximum stress of the amorphous structures is strongly strain-rate dependent and nearly independent of total strain. An observed 60% decrease in strength at lower strain rates indicates that the dynamic lattice, due to structural rearrangements from thermal vibrations of the atoms, is much weaker than the static lattice (lattice strained within an acoustic vibration period). At very high strain rates, the glass undergoes failure by an extension of interatomic bonds. At lower strain rates, the rearrangements correspond to a rotation of (SiO 4) 4− tetrahedra in order to increase the SiOSi bond angle in the direction of the applied strain. The crystalline lattice stays near equilibrium at all strain rates beyond the initial straining period; therefore, the stress maximum is nearly independent of strain rate and total strain. In the initial straining period, at low strain rates, the cubic phase of the high cristobalite lattice undergoes a change to tetragonal symmetry through a displacive transformation.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Physics</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwDxi8gGAI-Ctxw4CEKr6kIhY6W87lLIzcpNhJpf57UlrBhrjllud9T_cQcsrZFWe8uGZMiEyyUl6U_LJkWheZ3CMjPtEyUxMu9snoBzkkRyl9sGG0nIzI_KUNCH2wkdbrxi48JJq6vvaYaOtoFX3XBaTO-tBHpL6hyQcP9oaicwjdBureMS5soCtfRdv5tknH5MDZkPBkt8dk_nD_Nn3KZq-Pz9O7WQayLLpMoKpV7UAVla2VlgiVcEyjKgtVqVpYzVkFqIFjJa0AgczZHLR2aqKHv-SYnG97l7H97DF1ZuETYAi2wbZPRuRCF6XU_wKF_gbVFoTYphTRmWX0CxvXhjOzkW02Js3GpCm5-ZZt5BA72_XbBDa4aBvw6Tdb5krmeT5wt1sOBysrj9Ek8NgA1j4ONk3d-r8PfQEja5Pq</recordid><startdate>19910301</startdate><enddate>19910301</enddate><creator>Ochoa, Romulo</creator><creator>Swiler, Thomas P.</creator><creator>Simmons, Joseph H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SR</scope></search><sort><creationdate>19910301</creationdate><title>Molecular dynamics studies of brittle failure in silica: effect of thermal vibrations</title><author>Ochoa, Romulo ; Swiler, Thomas P. ; Simmons, Joseph H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-2e4d4dfc46bad473ecb2f07e4964b4d2a710bce7c1eb3a2c2e0fa5c77f4878123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ochoa, Romulo</creatorcontrib><creatorcontrib>Swiler, Thomas P.</creatorcontrib><creatorcontrib>Simmons, Joseph H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Engineered Materials Abstracts</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ochoa, Romulo</au><au>Swiler, Thomas P.</au><au>Simmons, Joseph H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics studies of brittle failure in silica: effect of thermal vibrations</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>1991-03-01</date><risdate>1991</risdate><volume>128</volume><issue>1</issue><spage>57</spage><epage>68</epage><pages>57-68</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>The brittle failure of amorphous and crystalline structures of SiO 2 is examined by molecular dynamics (MD) calculations. A number of structure-dependent effects are observed which appear to be associated with the non-crystalline state and relatively insensitive to the exact form of the modeled interatomic potentials. Brittle failure (fracture) is observed as a peak in the resultant stress from strains applied at a variety of strain rates. The maximum stress of the amorphous structures is strongly strain-rate dependent and nearly independent of total strain. An observed 60% decrease in strength at lower strain rates indicates that the dynamic lattice, due to structural rearrangements from thermal vibrations of the atoms, is much weaker than the static lattice (lattice strained within an acoustic vibration period). At very high strain rates, the glass undergoes failure by an extension of interatomic bonds. At lower strain rates, the rearrangements correspond to a rotation of (SiO 4) 4− tetrahedra in order to increase the SiOSi bond angle in the direction of the applied strain. The crystalline lattice stays near equilibrium at all strain rates beyond the initial straining period; therefore, the stress maximum is nearly independent of strain rate and total strain. In the initial straining period, at low strain rates, the cubic phase of the high cristobalite lattice undergoes a change to tetragonal symmetry through a displacive transformation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0022-3093(91)90776-3</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3093
ispartof Journal of non-crystalline solids, 1991-03, Vol.128 (1), p.57-68
issn 0022-3093
1873-4812
language eng
recordid cdi_proquest_miscellaneous_25276937
source Backfile Package - Materials Science [YMS]
subjects Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Fatigue, brittleness, fracture, and cracks
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Physics
title Molecular dynamics studies of brittle failure in silica: effect of thermal vibrations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20studies%20of%20brittle%20failure%20in%20silica:%20effect%20of%20thermal%20vibrations&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Ochoa,%20Romulo&rft.date=1991-03-01&rft.volume=128&rft.issue=1&rft.spage=57&rft.epage=68&rft.pages=57-68&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/0022-3093(91)90776-3&rft_dat=%3Cproquest_cross%3E25276937%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-2e4d4dfc46bad473ecb2f07e4964b4d2a710bce7c1eb3a2c2e0fa5c77f4878123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25272737&rft_id=info:pmid/&rfr_iscdi=true