Loading…
Fourier transform and grating-based spectroscopy with a mid-infrared supercontinuum source for trace gas detection in fruit quality monitoring
We present a multi-species trace gas sensor based on a fast, compact home-built Fourier transform spectrometer (FTS) combined with a broadband mid-infrared supercontinuum (SC) source. The spectrometer covers the spectral bandwidth of the SC source (2 - 4 µm) and provides a best spectral resolution o...
Saved in:
Published in: | Optics express 2021-04, Vol.29 (8), p.12381-12397 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a multi-species trace gas sensor based on a fast, compact home-built Fourier transform spectrometer (FTS) combined with a broadband mid-infrared supercontinuum (SC) source. The spectrometer covers the spectral bandwidth of the SC source (2 - 4 µm) and provides a best spectral resolution of 1 GHz in 6 seconds. It has a detection sensitivity of a few hundred of ppbv Hz
for different gas species. We study the performance of the developed spectrometer in terms of precision, linearity, long-term stability, and multi-species detection. We use the spectrometer for measuring fruit-produced volatiles under different atmospheric conditions and compare the performance with a previously developed scanning grating-based spectrometer. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.418072 |