Loading…

Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels

It is well known that reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) enables the rational design of diblock copolymer worm gels. Moreover, such hydrogels can undergo degelation on cooling below ambient temperature as a...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2021-06, Vol.17 (22), p.562-5612
Main Authors: Beattie, Deborah L, Mykhaylyk, Oleksandr O, Ryan, Anthony J, Armes, Steven P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-b38ffad382283cbe190f52e2f4ad768f4d6b6db17d0118d77610733be67862c43
cites cdi_FETCH-LOGICAL-c340t-b38ffad382283cbe190f52e2f4ad768f4d6b6db17d0118d77610733be67862c43
container_end_page 5612
container_issue 22
container_start_page 562
container_title Soft matter
container_volume 17
creator Beattie, Deborah L
Mykhaylyk, Oleksandr O
Ryan, Anthony J
Armes, Steven P
description It is well known that reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) enables the rational design of diblock copolymer worm gels. Moreover, such hydrogels can undergo degelation on cooling below ambient temperature as a result of a worm-to-sphere transition. However, only a subset of such block copolymer worms exhibit thermoresponsive behavior. For example, PMPC 26 -PHPMA 280 worm gels prepared using a poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC 26 ) precursor do not undergo degelation on cooling to 6 °C (see S. Sugihara et al. , J. Am. Chem. Soc. , 2011, 133 , 15707-15713). Informed by our recent studies (N. J. Warren et al. , Macromolecules , 2018, 51 , 8357-8371), we decided to reduce the mean degrees of polymerization of both the PMPC steric stabilizer block and the structure-directing PHPMA block when targeting a pure worm morphology. This rational approach reduces the hydrophobic character of the PHPMA block and hence introduces the desired thermoresponsive character, as evidenced by the worm-to-sphere transition (and concomitant degelation) that occurs on cooling a PMPC 15 -PHPMA 150 worm gel from 40 °C to 6 °C. Moreover, worms are reconstituted on returning to 40 °C and the original gel modulus is restored. This augurs well for potential biomedical applications, which will be examined in due course. Finally, small-angle X-ray scattering studies indicated a scaling law exponent of 0.67 ( 2/3) for the relationship between the worm core cross-sectional diameter and the PHPMA DP for a series of PHPMA-based worms prepared using a range of steric stabilizer blocks, which is consistent with the strong segregation regime for such systems. Judicious control over the mean degree of polymerization of each block in a amphiphilic diblock copolymer ensures that the corresponding worm gel exhibits thermoreversible (de)gelation behavior, as judged by TEM, SAXS and rheology studies.
doi_str_mv 10.1039/d1sm00460c
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528434854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539214570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-b38ffad382283cbe190f52e2f4ad768f4d6b6db17d0118d77610733be67862c43</originalsourceid><addsrcrecordid>eNpd0VtLwzAUB_AgipvTF9-VgC8iVHNrmj7KvMJE0Am-leZS7UybmrSTfXs7Nyf4lAPnx-HkfwA4xOgcI5peaBwqhBhHagsMccJYxAUT25uavg7AXggzhKhgmO-CAaVpKjghQzB9ytvS1bmFYVG37yaUAboC1m5uLJSlU65qeiGtgX3XV86b0Lg6lHMDpXXqAyrXOLuojIdfzlfwzdiwD3aK3AZzsH5H4OXmejq-iyaPt_fjy0mkKENtJKkoilxTQYigShqcoiImhhQs1wkXBdNcci1xohHGQicJxyihVBqe9MsrRkfgdDW38e6zM6HNqjIoY21eG9eFjMREMMpEvKQn_-jMdb7_91LRlGAWJ6hXZyulvAvBmyJrfFnlfpFhlC2zzq7w88NP1uMeH69HdrIyekN_w-3B0Qr4oDbdv2PRbwQEg_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539214570</pqid></control><display><type>article</type><title>Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels</title><source>Royal Society of Chemistry</source><creator>Beattie, Deborah L ; Mykhaylyk, Oleksandr O ; Ryan, Anthony J ; Armes, Steven P</creator><creatorcontrib>Beattie, Deborah L ; Mykhaylyk, Oleksandr O ; Ryan, Anthony J ; Armes, Steven P</creatorcontrib><description>It is well known that reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) enables the rational design of diblock copolymer worm gels. Moreover, such hydrogels can undergo degelation on cooling below ambient temperature as a result of a worm-to-sphere transition. However, only a subset of such block copolymer worms exhibit thermoresponsive behavior. For example, PMPC 26 -PHPMA 280 worm gels prepared using a poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC 26 ) precursor do not undergo degelation on cooling to 6 °C (see S. Sugihara et al. , J. Am. Chem. Soc. , 2011, 133 , 15707-15713). Informed by our recent studies (N. J. Warren et al. , Macromolecules , 2018, 51 , 8357-8371), we decided to reduce the mean degrees of polymerization of both the PMPC steric stabilizer block and the structure-directing PHPMA block when targeting a pure worm morphology. This rational approach reduces the hydrophobic character of the PHPMA block and hence introduces the desired thermoresponsive character, as evidenced by the worm-to-sphere transition (and concomitant degelation) that occurs on cooling a PMPC 15 -PHPMA 150 worm gel from 40 °C to 6 °C. Moreover, worms are reconstituted on returning to 40 °C and the original gel modulus is restored. This augurs well for potential biomedical applications, which will be examined in due course. Finally, small-angle X-ray scattering studies indicated a scaling law exponent of 0.67 ( 2/3) for the relationship between the worm core cross-sectional diameter and the PHPMA DP for a series of PHPMA-based worms prepared using a range of steric stabilizer blocks, which is consistent with the strong segregation regime for such systems. Judicious control over the mean degree of polymerization of each block in a amphiphilic diblock copolymer ensures that the corresponding worm gel exhibits thermoreversible (de)gelation behavior, as judged by TEM, SAXS and rheology studies.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d1sm00460c</identifier><identifier>PMID: 33998622</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Ambient temperature ; Biocompatibility ; Biomedical materials ; Block copolymers ; Chain transfer ; Chemical synthesis ; Cooling ; Gels ; Hydrogels ; Hydrophobicity ; Hydroxypropyl methacrylate ; Macromolecules ; Morphology ; NMR ; Nuclear magnetic resonance ; Phosphorylcholine ; Polymerization ; Rheological properties ; Rheology ; Scaling laws ; Worms ; X-ray scattering</subject><ispartof>Soft matter, 2021-06, Vol.17 (22), p.562-5612</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-b38ffad382283cbe190f52e2f4ad768f4d6b6db17d0118d77610733be67862c43</citedby><cites>FETCH-LOGICAL-c340t-b38ffad382283cbe190f52e2f4ad768f4d6b6db17d0118d77610733be67862c43</cites><orcidid>0000-0003-4110-8328 ; 0000-0002-8289-6351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33998622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beattie, Deborah L</creatorcontrib><creatorcontrib>Mykhaylyk, Oleksandr O</creatorcontrib><creatorcontrib>Ryan, Anthony J</creatorcontrib><creatorcontrib>Armes, Steven P</creatorcontrib><title>Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>It is well known that reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) enables the rational design of diblock copolymer worm gels. Moreover, such hydrogels can undergo degelation on cooling below ambient temperature as a result of a worm-to-sphere transition. However, only a subset of such block copolymer worms exhibit thermoresponsive behavior. For example, PMPC 26 -PHPMA 280 worm gels prepared using a poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC 26 ) precursor do not undergo degelation on cooling to 6 °C (see S. Sugihara et al. , J. Am. Chem. Soc. , 2011, 133 , 15707-15713). Informed by our recent studies (N. J. Warren et al. , Macromolecules , 2018, 51 , 8357-8371), we decided to reduce the mean degrees of polymerization of both the PMPC steric stabilizer block and the structure-directing PHPMA block when targeting a pure worm morphology. This rational approach reduces the hydrophobic character of the PHPMA block and hence introduces the desired thermoresponsive character, as evidenced by the worm-to-sphere transition (and concomitant degelation) that occurs on cooling a PMPC 15 -PHPMA 150 worm gel from 40 °C to 6 °C. Moreover, worms are reconstituted on returning to 40 °C and the original gel modulus is restored. This augurs well for potential biomedical applications, which will be examined in due course. Finally, small-angle X-ray scattering studies indicated a scaling law exponent of 0.67 ( 2/3) for the relationship between the worm core cross-sectional diameter and the PHPMA DP for a series of PHPMA-based worms prepared using a range of steric stabilizer blocks, which is consistent with the strong segregation regime for such systems. Judicious control over the mean degree of polymerization of each block in a amphiphilic diblock copolymer ensures that the corresponding worm gel exhibits thermoreversible (de)gelation behavior, as judged by TEM, SAXS and rheology studies.</description><subject>Ambient temperature</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Block copolymers</subject><subject>Chain transfer</subject><subject>Chemical synthesis</subject><subject>Cooling</subject><subject>Gels</subject><subject>Hydrogels</subject><subject>Hydrophobicity</subject><subject>Hydroxypropyl methacrylate</subject><subject>Macromolecules</subject><subject>Morphology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phosphorylcholine</subject><subject>Polymerization</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Scaling laws</subject><subject>Worms</subject><subject>X-ray scattering</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0VtLwzAUB_AgipvTF9-VgC8iVHNrmj7KvMJE0Am-leZS7UybmrSTfXs7Nyf4lAPnx-HkfwA4xOgcI5peaBwqhBhHagsMccJYxAUT25uavg7AXggzhKhgmO-CAaVpKjghQzB9ytvS1bmFYVG37yaUAboC1m5uLJSlU65qeiGtgX3XV86b0Lg6lHMDpXXqAyrXOLuojIdfzlfwzdiwD3aK3AZzsH5H4OXmejq-iyaPt_fjy0mkKENtJKkoilxTQYigShqcoiImhhQs1wkXBdNcci1xohHGQicJxyihVBqe9MsrRkfgdDW38e6zM6HNqjIoY21eG9eFjMREMMpEvKQn_-jMdb7_91LRlGAWJ6hXZyulvAvBmyJrfFnlfpFhlC2zzq7w88NP1uMeH69HdrIyekN_w-3B0Qr4oDbdv2PRbwQEg_s</recordid><startdate>20210609</startdate><enddate>20210609</enddate><creator>Beattie, Deborah L</creator><creator>Mykhaylyk, Oleksandr O</creator><creator>Ryan, Anthony J</creator><creator>Armes, Steven P</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4110-8328</orcidid><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid></search><sort><creationdate>20210609</creationdate><title>Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels</title><author>Beattie, Deborah L ; Mykhaylyk, Oleksandr O ; Ryan, Anthony J ; Armes, Steven P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-b38ffad382283cbe190f52e2f4ad768f4d6b6db17d0118d77610733be67862c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ambient temperature</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Block copolymers</topic><topic>Chain transfer</topic><topic>Chemical synthesis</topic><topic>Cooling</topic><topic>Gels</topic><topic>Hydrogels</topic><topic>Hydrophobicity</topic><topic>Hydroxypropyl methacrylate</topic><topic>Macromolecules</topic><topic>Morphology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phosphorylcholine</topic><topic>Polymerization</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Scaling laws</topic><topic>Worms</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beattie, Deborah L</creatorcontrib><creatorcontrib>Mykhaylyk, Oleksandr O</creatorcontrib><creatorcontrib>Ryan, Anthony J</creatorcontrib><creatorcontrib>Armes, Steven P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beattie, Deborah L</au><au>Mykhaylyk, Oleksandr O</au><au>Ryan, Anthony J</au><au>Armes, Steven P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2021-06-09</date><risdate>2021</risdate><volume>17</volume><issue>22</issue><spage>562</spage><epage>5612</epage><pages>562-5612</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>It is well known that reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) enables the rational design of diblock copolymer worm gels. Moreover, such hydrogels can undergo degelation on cooling below ambient temperature as a result of a worm-to-sphere transition. However, only a subset of such block copolymer worms exhibit thermoresponsive behavior. For example, PMPC 26 -PHPMA 280 worm gels prepared using a poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC 26 ) precursor do not undergo degelation on cooling to 6 °C (see S. Sugihara et al. , J. Am. Chem. Soc. , 2011, 133 , 15707-15713). Informed by our recent studies (N. J. Warren et al. , Macromolecules , 2018, 51 , 8357-8371), we decided to reduce the mean degrees of polymerization of both the PMPC steric stabilizer block and the structure-directing PHPMA block when targeting a pure worm morphology. This rational approach reduces the hydrophobic character of the PHPMA block and hence introduces the desired thermoresponsive character, as evidenced by the worm-to-sphere transition (and concomitant degelation) that occurs on cooling a PMPC 15 -PHPMA 150 worm gel from 40 °C to 6 °C. Moreover, worms are reconstituted on returning to 40 °C and the original gel modulus is restored. This augurs well for potential biomedical applications, which will be examined in due course. Finally, small-angle X-ray scattering studies indicated a scaling law exponent of 0.67 ( 2/3) for the relationship between the worm core cross-sectional diameter and the PHPMA DP for a series of PHPMA-based worms prepared using a range of steric stabilizer blocks, which is consistent with the strong segregation regime for such systems. Judicious control over the mean degree of polymerization of each block in a amphiphilic diblock copolymer ensures that the corresponding worm gel exhibits thermoreversible (de)gelation behavior, as judged by TEM, SAXS and rheology studies.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33998622</pmid><doi>10.1039/d1sm00460c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4110-8328</orcidid><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2021-06, Vol.17 (22), p.562-5612
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_2528434854
source Royal Society of Chemistry
subjects Ambient temperature
Biocompatibility
Biomedical materials
Block copolymers
Chain transfer
Chemical synthesis
Cooling
Gels
Hydrogels
Hydrophobicity
Hydroxypropyl methacrylate
Macromolecules
Morphology
NMR
Nuclear magnetic resonance
Phosphorylcholine
Polymerization
Rheological properties
Rheology
Scaling laws
Worms
X-ray scattering
title Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20synthesis%20of%20novel%20biocompatible%20thermoresponsive%20block%20copolymer%20worm%20gels&rft.jtitle=Soft%20matter&rft.au=Beattie,%20Deborah%20L&rft.date=2021-06-09&rft.volume=17&rft.issue=22&rft.spage=562&rft.epage=5612&rft.pages=562-5612&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d1sm00460c&rft_dat=%3Cproquest_rsc_p%3E2539214570%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-b38ffad382283cbe190f52e2f4ad768f4d6b6db17d0118d77610733be67862c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539214570&rft_id=info:pmid/33998622&rfr_iscdi=true