Loading…
Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels
It is well known that reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) enables the rational design of diblock copolymer worm gels. Moreover, such hydrogels can undergo degelation on cooling below ambient temperature as a...
Saved in:
Published in: | Soft matter 2021-06, Vol.17 (22), p.562-5612 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-b38ffad382283cbe190f52e2f4ad768f4d6b6db17d0118d77610733be67862c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-b38ffad382283cbe190f52e2f4ad768f4d6b6db17d0118d77610733be67862c43 |
container_end_page | 5612 |
container_issue | 22 |
container_start_page | 562 |
container_title | Soft matter |
container_volume | 17 |
creator | Beattie, Deborah L Mykhaylyk, Oleksandr O Ryan, Anthony J Armes, Steven P |
description | It is well known that reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) enables the rational design of diblock copolymer worm gels. Moreover, such hydrogels can undergo degelation on cooling below ambient temperature as a result of a worm-to-sphere transition. However, only a subset of such block copolymer worms exhibit thermoresponsive behavior. For example, PMPC
26
-PHPMA
280
worm gels prepared using a poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC
26
) precursor do not undergo degelation on cooling to 6 °C (see S. Sugihara
et al.
,
J. Am. Chem. Soc.
, 2011,
133
, 15707-15713). Informed by our recent studies (N. J. Warren
et al.
,
Macromolecules
, 2018,
51
, 8357-8371), we decided to reduce the mean degrees of polymerization of both the PMPC steric stabilizer block and the structure-directing PHPMA block when targeting a pure worm morphology. This rational approach reduces the hydrophobic character of the PHPMA block and hence introduces the desired thermoresponsive character, as evidenced by the worm-to-sphere transition (and concomitant degelation) that occurs on cooling a PMPC
15
-PHPMA
150
worm gel from 40 °C to 6 °C. Moreover, worms are reconstituted on returning to 40 °C and the original gel modulus is restored. This augurs well for potential biomedical applications, which will be examined in due course. Finally, small-angle X-ray scattering studies indicated a scaling law exponent of 0.67 ( 2/3) for the relationship between the worm core cross-sectional diameter and the PHPMA DP for a series of PHPMA-based worms prepared using a range of steric stabilizer blocks, which is consistent with the strong segregation regime for such systems.
Judicious control over the mean degree of polymerization of each block in a amphiphilic diblock copolymer ensures that the corresponding worm gel exhibits thermoreversible (de)gelation behavior, as judged by TEM, SAXS and rheology studies. |
doi_str_mv | 10.1039/d1sm00460c |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528434854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539214570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-b38ffad382283cbe190f52e2f4ad768f4d6b6db17d0118d77610733be67862c43</originalsourceid><addsrcrecordid>eNpd0VtLwzAUB_AgipvTF9-VgC8iVHNrmj7KvMJE0Am-leZS7UybmrSTfXs7Nyf4lAPnx-HkfwA4xOgcI5peaBwqhBhHagsMccJYxAUT25uavg7AXggzhKhgmO-CAaVpKjghQzB9ytvS1bmFYVG37yaUAboC1m5uLJSlU65qeiGtgX3XV86b0Lg6lHMDpXXqAyrXOLuojIdfzlfwzdiwD3aK3AZzsH5H4OXmejq-iyaPt_fjy0mkKENtJKkoilxTQYigShqcoiImhhQs1wkXBdNcci1xohHGQicJxyihVBqe9MsrRkfgdDW38e6zM6HNqjIoY21eG9eFjMREMMpEvKQn_-jMdb7_91LRlGAWJ6hXZyulvAvBmyJrfFnlfpFhlC2zzq7w88NP1uMeH69HdrIyekN_w-3B0Qr4oDbdv2PRbwQEg_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539214570</pqid></control><display><type>article</type><title>Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels</title><source>Royal Society of Chemistry</source><creator>Beattie, Deborah L ; Mykhaylyk, Oleksandr O ; Ryan, Anthony J ; Armes, Steven P</creator><creatorcontrib>Beattie, Deborah L ; Mykhaylyk, Oleksandr O ; Ryan, Anthony J ; Armes, Steven P</creatorcontrib><description>It is well known that reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) enables the rational design of diblock copolymer worm gels. Moreover, such hydrogels can undergo degelation on cooling below ambient temperature as a result of a worm-to-sphere transition. However, only a subset of such block copolymer worms exhibit thermoresponsive behavior. For example, PMPC
26
-PHPMA
280
worm gels prepared using a poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC
26
) precursor do not undergo degelation on cooling to 6 °C (see S. Sugihara
et al.
,
J. Am. Chem. Soc.
, 2011,
133
, 15707-15713). Informed by our recent studies (N. J. Warren
et al.
,
Macromolecules
, 2018,
51
, 8357-8371), we decided to reduce the mean degrees of polymerization of both the PMPC steric stabilizer block and the structure-directing PHPMA block when targeting a pure worm morphology. This rational approach reduces the hydrophobic character of the PHPMA block and hence introduces the desired thermoresponsive character, as evidenced by the worm-to-sphere transition (and concomitant degelation) that occurs on cooling a PMPC
15
-PHPMA
150
worm gel from 40 °C to 6 °C. Moreover, worms are reconstituted on returning to 40 °C and the original gel modulus is restored. This augurs well for potential biomedical applications, which will be examined in due course. Finally, small-angle X-ray scattering studies indicated a scaling law exponent of 0.67 ( 2/3) for the relationship between the worm core cross-sectional diameter and the PHPMA DP for a series of PHPMA-based worms prepared using a range of steric stabilizer blocks, which is consistent with the strong segregation regime for such systems.
Judicious control over the mean degree of polymerization of each block in a amphiphilic diblock copolymer ensures that the corresponding worm gel exhibits thermoreversible (de)gelation behavior, as judged by TEM, SAXS and rheology studies.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d1sm00460c</identifier><identifier>PMID: 33998622</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Ambient temperature ; Biocompatibility ; Biomedical materials ; Block copolymers ; Chain transfer ; Chemical synthesis ; Cooling ; Gels ; Hydrogels ; Hydrophobicity ; Hydroxypropyl methacrylate ; Macromolecules ; Morphology ; NMR ; Nuclear magnetic resonance ; Phosphorylcholine ; Polymerization ; Rheological properties ; Rheology ; Scaling laws ; Worms ; X-ray scattering</subject><ispartof>Soft matter, 2021-06, Vol.17 (22), p.562-5612</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-b38ffad382283cbe190f52e2f4ad768f4d6b6db17d0118d77610733be67862c43</citedby><cites>FETCH-LOGICAL-c340t-b38ffad382283cbe190f52e2f4ad768f4d6b6db17d0118d77610733be67862c43</cites><orcidid>0000-0003-4110-8328 ; 0000-0002-8289-6351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33998622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beattie, Deborah L</creatorcontrib><creatorcontrib>Mykhaylyk, Oleksandr O</creatorcontrib><creatorcontrib>Ryan, Anthony J</creatorcontrib><creatorcontrib>Armes, Steven P</creatorcontrib><title>Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>It is well known that reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) enables the rational design of diblock copolymer worm gels. Moreover, such hydrogels can undergo degelation on cooling below ambient temperature as a result of a worm-to-sphere transition. However, only a subset of such block copolymer worms exhibit thermoresponsive behavior. For example, PMPC
26
-PHPMA
280
worm gels prepared using a poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC
26
) precursor do not undergo degelation on cooling to 6 °C (see S. Sugihara
et al.
,
J. Am. Chem. Soc.
, 2011,
133
, 15707-15713). Informed by our recent studies (N. J. Warren
et al.
,
Macromolecules
, 2018,
51
, 8357-8371), we decided to reduce the mean degrees of polymerization of both the PMPC steric stabilizer block and the structure-directing PHPMA block when targeting a pure worm morphology. This rational approach reduces the hydrophobic character of the PHPMA block and hence introduces the desired thermoresponsive character, as evidenced by the worm-to-sphere transition (and concomitant degelation) that occurs on cooling a PMPC
15
-PHPMA
150
worm gel from 40 °C to 6 °C. Moreover, worms are reconstituted on returning to 40 °C and the original gel modulus is restored. This augurs well for potential biomedical applications, which will be examined in due course. Finally, small-angle X-ray scattering studies indicated a scaling law exponent of 0.67 ( 2/3) for the relationship between the worm core cross-sectional diameter and the PHPMA DP for a series of PHPMA-based worms prepared using a range of steric stabilizer blocks, which is consistent with the strong segregation regime for such systems.
Judicious control over the mean degree of polymerization of each block in a amphiphilic diblock copolymer ensures that the corresponding worm gel exhibits thermoreversible (de)gelation behavior, as judged by TEM, SAXS and rheology studies.</description><subject>Ambient temperature</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Block copolymers</subject><subject>Chain transfer</subject><subject>Chemical synthesis</subject><subject>Cooling</subject><subject>Gels</subject><subject>Hydrogels</subject><subject>Hydrophobicity</subject><subject>Hydroxypropyl methacrylate</subject><subject>Macromolecules</subject><subject>Morphology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phosphorylcholine</subject><subject>Polymerization</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Scaling laws</subject><subject>Worms</subject><subject>X-ray scattering</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0VtLwzAUB_AgipvTF9-VgC8iVHNrmj7KvMJE0Am-leZS7UybmrSTfXs7Nyf4lAPnx-HkfwA4xOgcI5peaBwqhBhHagsMccJYxAUT25uavg7AXggzhKhgmO-CAaVpKjghQzB9ytvS1bmFYVG37yaUAboC1m5uLJSlU65qeiGtgX3XV86b0Lg6lHMDpXXqAyrXOLuojIdfzlfwzdiwD3aK3AZzsH5H4OXmejq-iyaPt_fjy0mkKENtJKkoilxTQYigShqcoiImhhQs1wkXBdNcci1xohHGQicJxyihVBqe9MsrRkfgdDW38e6zM6HNqjIoY21eG9eFjMREMMpEvKQn_-jMdb7_91LRlGAWJ6hXZyulvAvBmyJrfFnlfpFhlC2zzq7w88NP1uMeH69HdrIyekN_w-3B0Qr4oDbdv2PRbwQEg_s</recordid><startdate>20210609</startdate><enddate>20210609</enddate><creator>Beattie, Deborah L</creator><creator>Mykhaylyk, Oleksandr O</creator><creator>Ryan, Anthony J</creator><creator>Armes, Steven P</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4110-8328</orcidid><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid></search><sort><creationdate>20210609</creationdate><title>Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels</title><author>Beattie, Deborah L ; Mykhaylyk, Oleksandr O ; Ryan, Anthony J ; Armes, Steven P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-b38ffad382283cbe190f52e2f4ad768f4d6b6db17d0118d77610733be67862c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ambient temperature</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Block copolymers</topic><topic>Chain transfer</topic><topic>Chemical synthesis</topic><topic>Cooling</topic><topic>Gels</topic><topic>Hydrogels</topic><topic>Hydrophobicity</topic><topic>Hydroxypropyl methacrylate</topic><topic>Macromolecules</topic><topic>Morphology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phosphorylcholine</topic><topic>Polymerization</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Scaling laws</topic><topic>Worms</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beattie, Deborah L</creatorcontrib><creatorcontrib>Mykhaylyk, Oleksandr O</creatorcontrib><creatorcontrib>Ryan, Anthony J</creatorcontrib><creatorcontrib>Armes, Steven P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beattie, Deborah L</au><au>Mykhaylyk, Oleksandr O</au><au>Ryan, Anthony J</au><au>Armes, Steven P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2021-06-09</date><risdate>2021</risdate><volume>17</volume><issue>22</issue><spage>562</spage><epage>5612</epage><pages>562-5612</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>It is well known that reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) enables the rational design of diblock copolymer worm gels. Moreover, such hydrogels can undergo degelation on cooling below ambient temperature as a result of a worm-to-sphere transition. However, only a subset of such block copolymer worms exhibit thermoresponsive behavior. For example, PMPC
26
-PHPMA
280
worm gels prepared using a poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC
26
) precursor do not undergo degelation on cooling to 6 °C (see S. Sugihara
et al.
,
J. Am. Chem. Soc.
, 2011,
133
, 15707-15713). Informed by our recent studies (N. J. Warren
et al.
,
Macromolecules
, 2018,
51
, 8357-8371), we decided to reduce the mean degrees of polymerization of both the PMPC steric stabilizer block and the structure-directing PHPMA block when targeting a pure worm morphology. This rational approach reduces the hydrophobic character of the PHPMA block and hence introduces the desired thermoresponsive character, as evidenced by the worm-to-sphere transition (and concomitant degelation) that occurs on cooling a PMPC
15
-PHPMA
150
worm gel from 40 °C to 6 °C. Moreover, worms are reconstituted on returning to 40 °C and the original gel modulus is restored. This augurs well for potential biomedical applications, which will be examined in due course. Finally, small-angle X-ray scattering studies indicated a scaling law exponent of 0.67 ( 2/3) for the relationship between the worm core cross-sectional diameter and the PHPMA DP for a series of PHPMA-based worms prepared using a range of steric stabilizer blocks, which is consistent with the strong segregation regime for such systems.
Judicious control over the mean degree of polymerization of each block in a amphiphilic diblock copolymer ensures that the corresponding worm gel exhibits thermoreversible (de)gelation behavior, as judged by TEM, SAXS and rheology studies.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33998622</pmid><doi>10.1039/d1sm00460c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4110-8328</orcidid><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2021-06, Vol.17 (22), p.562-5612 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_miscellaneous_2528434854 |
source | Royal Society of Chemistry |
subjects | Ambient temperature Biocompatibility Biomedical materials Block copolymers Chain transfer Chemical synthesis Cooling Gels Hydrogels Hydrophobicity Hydroxypropyl methacrylate Macromolecules Morphology NMR Nuclear magnetic resonance Phosphorylcholine Polymerization Rheological properties Rheology Scaling laws Worms X-ray scattering |
title | Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20synthesis%20of%20novel%20biocompatible%20thermoresponsive%20block%20copolymer%20worm%20gels&rft.jtitle=Soft%20matter&rft.au=Beattie,%20Deborah%20L&rft.date=2021-06-09&rft.volume=17&rft.issue=22&rft.spage=562&rft.epage=5612&rft.pages=562-5612&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d1sm00460c&rft_dat=%3Cproquest_rsc_p%3E2539214570%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-b38ffad382283cbe190f52e2f4ad768f4d6b6db17d0118d77610733be67862c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2539214570&rft_id=info:pmid/33998622&rfr_iscdi=true |