Loading…
Proteogenomics Study of Blastobotrys adeninivorans TMCC 70007A Dominant Yeast in the Fermentation Process of Pu-erh Tea
Blastobotrys adeninivorans plays an essential role in pile-fermenting of Pu-erh tea. Its ability to assimilate various carbon and nitrogen sources makes it available for application in a wide range of industry sectors. The genome of B. adeninivorans TMCC 70007 isolated from pile-fermented Pu-erh tea...
Saved in:
Published in: | Journal of proteome research 2021-06, Vol.20 (6), p.3290-3304 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Blastobotrys adeninivorans plays an essential role in pile-fermenting of Pu-erh tea. Its ability to assimilate various carbon and nitrogen sources makes it available for application in a wide range of industry sectors. The genome of B. adeninivorans TMCC 70007 isolated from pile-fermented Pu-erh tea was sequenced and assembled. Proteomics analysis indicated that 4900 proteins in TMCC 70007 were expressed under various culture conditions. Proteogenomics mapping revealed 48 previously unknown genes and corrected 118 gene models predicted by GeneMark-ES. Ortho-proteogenomics analysis identified 17 previously unidentified genes in B. adeninivorans LS3, the first strain with a sequenced genome among the genus Blastobotrys as well. More importantly, five species specific genes were identified from TMCC 70007, which could serve as a barcode for strain typing and were applicable for fermentation process protection of this industrial species. The datasets generated from tea aqueous extract culture not only increased the proteome coverage and accuracy but also contributed to the identification of proteins related to polyphenols and caffeine, which were considered to change greatly during the microbial fermentation of Pu-erh tea. This study provides a proteome perspective on TMCC 70007, which was considered to be an important strain in the production of Pu-erh tea. The systematic proteogenomics analysis not only made a better annotation on the genome of B. adeninivorans TMCC 70007 as previous proteogenomics study but also provided solution for fermentation process protection on valuable industrial species with species specific genes uniquely identified from proteogenomics study. |
---|---|
ISSN: | 1535-3893 1535-3907 |
DOI: | 10.1021/acs.jproteome.1c00205 |