Loading…

Hot Injection-Based Synthesized Colloidal CdSe Quantum Dots Embedded in Poly(4-vinylpyridine) (PVP) Matrix Form a Nanoscale Heterostructure for a High On–Off Ratio Memory-Switching Device

Chalcogenide-based quantum dots are useful for the application of memory-switching devices because of the control in the trap states in the materials. The control in the trap states can be achieved using a hot-injection colloidal synthesis method that produces temperature-dependent size-variable qua...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-06, Vol.13 (21), p.25064-25071
Main Authors: Pradhan, Rakesh Rosan, Bera, Jayanta, Betal, Atanu, Dagar, Parveen, Sahu, Satyajit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chalcogenide-based quantum dots are useful for the application of memory-switching devices because of the control in the trap states in the materials. The control in the trap states can be achieved using a hot-injection colloidal synthesis method that produces temperature-dependent size-variable quantum dots. In addition to this, formation of a nanoscale heterostructure with an insulating material adds to the charge-trapped switching mechanism. Here, we have shown that the colloidal monodispersed CdSe quantum dots and poly­(4-vinylpyridine) (PVP) formed a nanoscale heterostructure between themselves when taken in a suitable ratio to fabricate a device. This heterostructure helps realize memory-switching in the device with a maximum on–off current ratio of 105. The switching in the device is mainly due to the trap states in the CdSe quantum dots. The conduction in the off state is due to thermal charge injection and space charge injection conduction and in the on state, due to the Ohmic conduction mechanism.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c02702