Loading…
Network analysis reveals important genes in human placenta
Aim To determine which genes are important in placenta by network analysis. Methods Placenta expressing genes were screened from RNA‐Seq data. Protein–protein interaction data were downloaded from STRING (v11.0) database. Google PageRank (PR) algorithm was used to identify important placental genes...
Saved in:
Published in: | The journal of obstetrics and gynaecology research 2021-08, Vol.47 (8), p.2607-2615 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3770-7549eb3e18223dd4ce7f60975bda65ff14f584b887573ebe5e0bc720e51611383 |
---|---|
cites | cdi_FETCH-LOGICAL-c3770-7549eb3e18223dd4ce7f60975bda65ff14f584b887573ebe5e0bc720e51611383 |
container_end_page | 2615 |
container_issue | 8 |
container_start_page | 2607 |
container_title | The journal of obstetrics and gynaecology research |
container_volume | 47 |
creator | Lin, Peihong Lai, Xuedan Wu, Ling Liu, Wei Lin, Shiqiang Ye, Jianwen |
description | Aim
To determine which genes are important in placenta by network analysis.
Methods
Placenta expressing genes were screened from RNA‐Seq data. Protein–protein interaction data were downloaded from STRING (v11.0) database. Google PageRank (PR) algorithm was used to identify important placental genes from protein interaction network. Six placental disease‐related datasets were downloaded from NCBI GEO database, and the differential expression of the 99 genes was identified.
Results
We calculated PR for each placenta expressing gene and defined the top 99 genes with high PR as important genes. GAPDH has the highest PR. The 99 genes had different expression pattern in placental cell types. FN1 is up‐regulated in 8 w EVT compared to 8 w CTB and 24 w EVT compared to 8 w EVT. HSPA4 is down‐regulated in 8 w EVT compared to 8 w CTB and 24 w EVT compared to 8 w EVT. MIB2, TLR4, and UBB are consistently changed in preeclampsia (PE). UBB and ACTG1 were identified to be down‐regulated in fetal growth restriction (FGR). SOD1 is down‐regulated in preterm birth placenta.
Conclusion
Our findings confirmed that the importance of these genes in placenta‐related diseases, and provide new candidates (MIB2, UBB, ACTG1, and SOD1) for placenta‐related disease diagnosis and treatment. |
doi_str_mv | 10.1111/jog.14820 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2528910745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528910745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3770-7549eb3e18223dd4ce7f60975bda65ff14f584b887573ebe5e0bc720e51611383</originalsourceid><addsrcrecordid>eNp10L1OwzAUBWALgWgpDLwAisQCQ9rr2I4dNlRBAVV0gTlykpuSkp9iJ1R9e1xSGJDwYlv6fHR9CDmnMKZuTVbNcky5CuCADCnn0gcpwkN3Zpz6CmQ4ICfWrgCojKg6JgPGAYTiMCQ3z9huGvPu6VqXW1tYz-An6tJ6RbVuTKvr1ltije5ee29dpWtvXeoU61afkqPcQTzb7yPyen_3Mn3w54vZ4_R27qdMSvCl4BEmDKkKApZlPEWZhxBJkWQ6FHlOee5GSZSSQjJMUCAkqQwABQ0pZYqNyFWfuzbNR4e2javCpliWusams3EgAhVRkFw4evmHrprOuJ_tlJChCmQUOXXdq9Q01hrM47UpKm22MYV4V6h7tYy_C3X2Yp_YJRVmv_KnQQcmPdgUJW7_T4qfFrM-8guCJX12</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557682799</pqid></control><display><type>article</type><title>Network analysis reveals important genes in human placenta</title><source>Wiley</source><creator>Lin, Peihong ; Lai, Xuedan ; Wu, Ling ; Liu, Wei ; Lin, Shiqiang ; Ye, Jianwen</creator><creatorcontrib>Lin, Peihong ; Lai, Xuedan ; Wu, Ling ; Liu, Wei ; Lin, Shiqiang ; Ye, Jianwen</creatorcontrib><description>Aim
To determine which genes are important in placenta by network analysis.
Methods
Placenta expressing genes were screened from RNA‐Seq data. Protein–protein interaction data were downloaded from STRING (v11.0) database. Google PageRank (PR) algorithm was used to identify important placental genes from protein interaction network. Six placental disease‐related datasets were downloaded from NCBI GEO database, and the differential expression of the 99 genes was identified.
Results
We calculated PR for each placenta expressing gene and defined the top 99 genes with high PR as important genes. GAPDH has the highest PR. The 99 genes had different expression pattern in placental cell types. FN1 is up‐regulated in 8 w EVT compared to 8 w CTB and 24 w EVT compared to 8 w EVT. HSPA4 is down‐regulated in 8 w EVT compared to 8 w CTB and 24 w EVT compared to 8 w EVT. MIB2, TLR4, and UBB are consistently changed in preeclampsia (PE). UBB and ACTG1 were identified to be down‐regulated in fetal growth restriction (FGR). SOD1 is down‐regulated in preterm birth placenta.
Conclusion
Our findings confirmed that the importance of these genes in placenta‐related diseases, and provide new candidates (MIB2, UBB, ACTG1, and SOD1) for placenta‐related disease diagnosis and treatment.</description><identifier>ISSN: 1341-8076</identifier><identifier>EISSN: 1447-0756</identifier><identifier>DOI: 10.1111/jog.14820</identifier><identifier>PMID: 34005840</identifier><language>eng</language><publisher>Kyoto, Japan: John Wiley & Sons Australia, Ltd</publisher><subject>Actins - genetics ; cytotrophoblast ; extravillous trophoblast ; Female ; fetal growth restriction ; Fetuses ; gestational diabetes mellitus ; Glyceraldehyde-3-phosphate dehydrogenase ; Humans ; Infant, Newborn ; Placenta ; Placenta Diseases ; Pre-eclampsia ; Pre-Eclampsia - genetics ; Preeclampsia ; Pregnancy ; Premature Birth ; preterm birth ; Proteins ; Superoxide dismutase ; Superoxide Dismutase-1 - genetics ; syncytiotrophoblast ; TLR4 protein ; Toll-like receptors ; transcriptome ; Trophoblasts ; Ubiquitin - genetics ; Ubiquitin-Protein Ligases - genetics ; villous stromal cell</subject><ispartof>The journal of obstetrics and gynaecology research, 2021-08, Vol.47 (8), p.2607-2615</ispartof><rights>2021 Japan Society of Obstetrics and Gynecology</rights><rights>2021 Japan Society of Obstetrics and Gynecology.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3770-7549eb3e18223dd4ce7f60975bda65ff14f584b887573ebe5e0bc720e51611383</citedby><cites>FETCH-LOGICAL-c3770-7549eb3e18223dd4ce7f60975bda65ff14f584b887573ebe5e0bc720e51611383</cites><orcidid>0000-0001-8982-2796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34005840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Peihong</creatorcontrib><creatorcontrib>Lai, Xuedan</creatorcontrib><creatorcontrib>Wu, Ling</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lin, Shiqiang</creatorcontrib><creatorcontrib>Ye, Jianwen</creatorcontrib><title>Network analysis reveals important genes in human placenta</title><title>The journal of obstetrics and gynaecology research</title><addtitle>J Obstet Gynaecol Res</addtitle><description>Aim
To determine which genes are important in placenta by network analysis.
Methods
Placenta expressing genes were screened from RNA‐Seq data. Protein–protein interaction data were downloaded from STRING (v11.0) database. Google PageRank (PR) algorithm was used to identify important placental genes from protein interaction network. Six placental disease‐related datasets were downloaded from NCBI GEO database, and the differential expression of the 99 genes was identified.
Results
We calculated PR for each placenta expressing gene and defined the top 99 genes with high PR as important genes. GAPDH has the highest PR. The 99 genes had different expression pattern in placental cell types. FN1 is up‐regulated in 8 w EVT compared to 8 w CTB and 24 w EVT compared to 8 w EVT. HSPA4 is down‐regulated in 8 w EVT compared to 8 w CTB and 24 w EVT compared to 8 w EVT. MIB2, TLR4, and UBB are consistently changed in preeclampsia (PE). UBB and ACTG1 were identified to be down‐regulated in fetal growth restriction (FGR). SOD1 is down‐regulated in preterm birth placenta.
Conclusion
Our findings confirmed that the importance of these genes in placenta‐related diseases, and provide new candidates (MIB2, UBB, ACTG1, and SOD1) for placenta‐related disease diagnosis and treatment.</description><subject>Actins - genetics</subject><subject>cytotrophoblast</subject><subject>extravillous trophoblast</subject><subject>Female</subject><subject>fetal growth restriction</subject><subject>Fetuses</subject><subject>gestational diabetes mellitus</subject><subject>Glyceraldehyde-3-phosphate dehydrogenase</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Placenta</subject><subject>Placenta Diseases</subject><subject>Pre-eclampsia</subject><subject>Pre-Eclampsia - genetics</subject><subject>Preeclampsia</subject><subject>Pregnancy</subject><subject>Premature Birth</subject><subject>preterm birth</subject><subject>Proteins</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase-1 - genetics</subject><subject>syncytiotrophoblast</subject><subject>TLR4 protein</subject><subject>Toll-like receptors</subject><subject>transcriptome</subject><subject>Trophoblasts</subject><subject>Ubiquitin - genetics</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>villous stromal cell</subject><issn>1341-8076</issn><issn>1447-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAUBWALgWgpDLwAisQCQ9rr2I4dNlRBAVV0gTlykpuSkp9iJ1R9e1xSGJDwYlv6fHR9CDmnMKZuTVbNcky5CuCADCnn0gcpwkN3Zpz6CmQ4ICfWrgCojKg6JgPGAYTiMCQ3z9huGvPu6VqXW1tYz-An6tJ6RbVuTKvr1ltije5ee29dpWtvXeoU61afkqPcQTzb7yPyen_3Mn3w54vZ4_R27qdMSvCl4BEmDKkKApZlPEWZhxBJkWQ6FHlOee5GSZSSQjJMUCAkqQwABQ0pZYqNyFWfuzbNR4e2javCpliWusams3EgAhVRkFw4evmHrprOuJ_tlJChCmQUOXXdq9Q01hrM47UpKm22MYV4V6h7tYy_C3X2Yp_YJRVmv_KnQQcmPdgUJW7_T4qfFrM-8guCJX12</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Lin, Peihong</creator><creator>Lai, Xuedan</creator><creator>Wu, Ling</creator><creator>Liu, Wei</creator><creator>Lin, Shiqiang</creator><creator>Ye, Jianwen</creator><general>John Wiley & Sons Australia, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TO</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8982-2796</orcidid></search><sort><creationdate>202108</creationdate><title>Network analysis reveals important genes in human placenta</title><author>Lin, Peihong ; Lai, Xuedan ; Wu, Ling ; Liu, Wei ; Lin, Shiqiang ; Ye, Jianwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3770-7549eb3e18223dd4ce7f60975bda65ff14f584b887573ebe5e0bc720e51611383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actins - genetics</topic><topic>cytotrophoblast</topic><topic>extravillous trophoblast</topic><topic>Female</topic><topic>fetal growth restriction</topic><topic>Fetuses</topic><topic>gestational diabetes mellitus</topic><topic>Glyceraldehyde-3-phosphate dehydrogenase</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Placenta</topic><topic>Placenta Diseases</topic><topic>Pre-eclampsia</topic><topic>Pre-Eclampsia - genetics</topic><topic>Preeclampsia</topic><topic>Pregnancy</topic><topic>Premature Birth</topic><topic>preterm birth</topic><topic>Proteins</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase-1 - genetics</topic><topic>syncytiotrophoblast</topic><topic>TLR4 protein</topic><topic>Toll-like receptors</topic><topic>transcriptome</topic><topic>Trophoblasts</topic><topic>Ubiquitin - genetics</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>villous stromal cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Peihong</creatorcontrib><creatorcontrib>Lai, Xuedan</creatorcontrib><creatorcontrib>Wu, Ling</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lin, Shiqiang</creatorcontrib><creatorcontrib>Ye, Jianwen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of obstetrics and gynaecology research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Peihong</au><au>Lai, Xuedan</au><au>Wu, Ling</au><au>Liu, Wei</au><au>Lin, Shiqiang</au><au>Ye, Jianwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network analysis reveals important genes in human placenta</atitle><jtitle>The journal of obstetrics and gynaecology research</jtitle><addtitle>J Obstet Gynaecol Res</addtitle><date>2021-08</date><risdate>2021</risdate><volume>47</volume><issue>8</issue><spage>2607</spage><epage>2615</epage><pages>2607-2615</pages><issn>1341-8076</issn><eissn>1447-0756</eissn><abstract>Aim
To determine which genes are important in placenta by network analysis.
Methods
Placenta expressing genes were screened from RNA‐Seq data. Protein–protein interaction data were downloaded from STRING (v11.0) database. Google PageRank (PR) algorithm was used to identify important placental genes from protein interaction network. Six placental disease‐related datasets were downloaded from NCBI GEO database, and the differential expression of the 99 genes was identified.
Results
We calculated PR for each placenta expressing gene and defined the top 99 genes with high PR as important genes. GAPDH has the highest PR. The 99 genes had different expression pattern in placental cell types. FN1 is up‐regulated in 8 w EVT compared to 8 w CTB and 24 w EVT compared to 8 w EVT. HSPA4 is down‐regulated in 8 w EVT compared to 8 w CTB and 24 w EVT compared to 8 w EVT. MIB2, TLR4, and UBB are consistently changed in preeclampsia (PE). UBB and ACTG1 were identified to be down‐regulated in fetal growth restriction (FGR). SOD1 is down‐regulated in preterm birth placenta.
Conclusion
Our findings confirmed that the importance of these genes in placenta‐related diseases, and provide new candidates (MIB2, UBB, ACTG1, and SOD1) for placenta‐related disease diagnosis and treatment.</abstract><cop>Kyoto, Japan</cop><pub>John Wiley & Sons Australia, Ltd</pub><pmid>34005840</pmid><doi>10.1111/jog.14820</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8982-2796</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1341-8076 |
ispartof | The journal of obstetrics and gynaecology research, 2021-08, Vol.47 (8), p.2607-2615 |
issn | 1341-8076 1447-0756 |
language | eng |
recordid | cdi_proquest_miscellaneous_2528910745 |
source | Wiley |
subjects | Actins - genetics cytotrophoblast extravillous trophoblast Female fetal growth restriction Fetuses gestational diabetes mellitus Glyceraldehyde-3-phosphate dehydrogenase Humans Infant, Newborn Placenta Placenta Diseases Pre-eclampsia Pre-Eclampsia - genetics Preeclampsia Pregnancy Premature Birth preterm birth Proteins Superoxide dismutase Superoxide Dismutase-1 - genetics syncytiotrophoblast TLR4 protein Toll-like receptors transcriptome Trophoblasts Ubiquitin - genetics Ubiquitin-Protein Ligases - genetics villous stromal cell |
title | Network analysis reveals important genes in human placenta |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20analysis%20reveals%20important%20genes%20in%20human%20placenta&rft.jtitle=The%20journal%20of%20obstetrics%20and%20gynaecology%20research&rft.au=Lin,%20Peihong&rft.date=2021-08&rft.volume=47&rft.issue=8&rft.spage=2607&rft.epage=2615&rft.pages=2607-2615&rft.issn=1341-8076&rft.eissn=1447-0756&rft_id=info:doi/10.1111/jog.14820&rft_dat=%3Cproquest_cross%3E2528910745%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3770-7549eb3e18223dd4ce7f60975bda65ff14f584b887573ebe5e0bc720e51611383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557682799&rft_id=info:pmid/34005840&rfr_iscdi=true |