Loading…
Crystal structure and magnetic properties of the magnetically isolated zigzag chain in KGaCu(PO 4 ) 2
Magnetism of any material depends on its crystal structure. However, two isostructural compounds such as MCuMoO4(OH) (M = Na, K) can have markedly different magnetic properties. Herein, we introduce a new method to describe the linkages between the O-atoms and their bridged Cu2+ ions in order to cle...
Saved in:
Published in: | Dalton transactions : an international journal of inorganic chemistry 2021-06, Vol.50 (22), p.7835-7842 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnetism of any material depends on its crystal structure. However, two isostructural compounds such as MCuMoO4(OH) (M = Na, K) can have markedly different magnetic properties. Herein, we introduce a new method to describe the linkages between the O-atoms and their bridged Cu2+ ions in order to clearly illustrate the structure-magnetic property relationships. This new method can account for magnetic differences between the two isostructural MCuMoO4(OH) and is further confirmed by the rational design and development of a new compound KGaCu(PO4)2 with different linkages. The title compound crystalized in a space group of P21/c adopts a one-dimensional (1D) magnetically isolated S = 1/2 zigzag chain composed of elongated [CuO6] octahedra via sharing alternately equatorial and skew edges. O atoms at the skew edges bridge the equatorial and axial orbitals of neighbouring Cu2+ ions (denoted EOA), while those at the equatorial edges bridge the equatorial orbitals of Cu2+ ions (EOE). The nearest-neighbour (NN) magnetic coupling of Cu2+ ions with the EOA linkage at 2.821 Å in the title compound is negligible, whereas the NN magnetic coupling of Cu2+ ions with the EOE linkage at 2.974 Å is essential. Therefore, the zigzag chain containing alternating spin-exchange dimers and no-spin-exchange ones is similar in electronic configuration to the dimerization of the quasi-one-dimensional antiferromagnet. Magnetic investigation of analogous compounds with a 'trans-cis-trans-cis' configuration observed in the title compound may shed light on structural evolutions associated with spin-Peierls (SP) transition. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/D1DT00819F |