Loading…

Organosilica Cages Target Hepatic Sinusoidal Endothelial Cells Avoiding Macrophage Filtering

Over the last years, advancements in the use of nanoparticles for biomedical applications have clearly showcased their potential for the preparation of improved imaging and drug-delivery systems. However, compared to the vast number of currently studied nanoparticles for such applications, only a fe...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2021-06, Vol.15 (6), p.9701-9716
Main Authors: Talamini, Laura, Picchetti, Pierre, Ferreira, Lorena Maria, Sitia, Giovanni, Russo, Luca, Violatto, Martina B, Travaglini, Leana, Fernandez Alarcon, Jennifer, Righelli, Lucrezia, Bigini, Paolo, De Cola, Luisa
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a333t-48669857cf5ef70a9689dfa50b1dff7c963bd6558178d17b55296f2189d395f43
cites cdi_FETCH-LOGICAL-a333t-48669857cf5ef70a9689dfa50b1dff7c963bd6558178d17b55296f2189d395f43
container_end_page 9716
container_issue 6
container_start_page 9701
container_title ACS nano
container_volume 15
creator Talamini, Laura
Picchetti, Pierre
Ferreira, Lorena Maria
Sitia, Giovanni
Russo, Luca
Violatto, Martina B
Travaglini, Leana
Fernandez Alarcon, Jennifer
Righelli, Lucrezia
Bigini, Paolo
De Cola, Luisa
description Over the last years, advancements in the use of nanoparticles for biomedical applications have clearly showcased their potential for the preparation of improved imaging and drug-delivery systems. However, compared to the vast number of currently studied nanoparticles for such applications, only a few successfully translate into clinical practice. A common “barrier” that prevents nanoparticles from efficiently delivering their payload to the target site after administration is related to liver filtering, mainly due to nanoparticle uptake by macrophages. This work reports the physicochemical and biological investigation of disulfide-bridged organosilica nanoparticles with cage-like morphology, OSCs, assessing in detail their bioaccumulation in vivo. The fate of intravenously injected 20 nm OSCs was investigated in both healthy and tumor-bearing mice. Interestingly, OSCs exclusively colocalize with hepatic sinusoidal endothelial cells (LSECs) while avoiding Kupffer-cell uptake (less than 6%) under both physiological and pathological conditions. Our findings suggest that organosilica nanocages hold the potential to be used as nanotools for LSECs modulation, potentially impacting key biological processes such as tumor cell extravasation and hepatic immunity to invading metastatic cells or a tolerogenic state in intrahepatic immune cells in autoimmune diseases.
doi_str_mv 10.1021/acsnano.1c00316
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2529930506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529930506</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-48669857cf5ef70a9689dfa50b1dff7c963bd6558178d17b55296f2189d395f43</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMobk7P3iRHQbolzZI2x1E2Jyg7OMGDENI06TK6tiat4L83srqbp3wkz_vw5QXgFqMpRjGeSeVrWTdTrBAimJ2BMeaERShl7-enmeIRuPJ-jxBN0oRdghGZI8Q5RWPwsXFlEHhbWSVhJkvt4Va6UndwrVvZWQVfbd37xhaygsu6aLqdrmyYM11VHi6-woutS_gilWvaXRDAla067cLlNbgwsvL6Zjgn4G213Gbr6Hnz-JQtniNJCOmiecoYT2miDNUmQZKzlBdGUpTjwphEcUbyglGa4iQtcJJTGnNmYhwowqmZkwm4P3pb13z22nfiYL0K-8laN70XcQhwgihiAZ0d0bCt904b0Tp7kO5bYCR-KxVDpWKoNCTuBnmfH3Rx4v86DMDDEQhJsW96V4e__qv7ASklgew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529930506</pqid></control><display><type>article</type><title>Organosilica Cages Target Hepatic Sinusoidal Endothelial Cells Avoiding Macrophage Filtering</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Talamini, Laura ; Picchetti, Pierre ; Ferreira, Lorena Maria ; Sitia, Giovanni ; Russo, Luca ; Violatto, Martina B ; Travaglini, Leana ; Fernandez Alarcon, Jennifer ; Righelli, Lucrezia ; Bigini, Paolo ; De Cola, Luisa</creator><creatorcontrib>Talamini, Laura ; Picchetti, Pierre ; Ferreira, Lorena Maria ; Sitia, Giovanni ; Russo, Luca ; Violatto, Martina B ; Travaglini, Leana ; Fernandez Alarcon, Jennifer ; Righelli, Lucrezia ; Bigini, Paolo ; De Cola, Luisa</creatorcontrib><description>Over the last years, advancements in the use of nanoparticles for biomedical applications have clearly showcased their potential for the preparation of improved imaging and drug-delivery systems. However, compared to the vast number of currently studied nanoparticles for such applications, only a few successfully translate into clinical practice. A common “barrier” that prevents nanoparticles from efficiently delivering their payload to the target site after administration is related to liver filtering, mainly due to nanoparticle uptake by macrophages. This work reports the physicochemical and biological investigation of disulfide-bridged organosilica nanoparticles with cage-like morphology, OSCs, assessing in detail their bioaccumulation in vivo. The fate of intravenously injected 20 nm OSCs was investigated in both healthy and tumor-bearing mice. Interestingly, OSCs exclusively colocalize with hepatic sinusoidal endothelial cells (LSECs) while avoiding Kupffer-cell uptake (less than 6%) under both physiological and pathological conditions. Our findings suggest that organosilica nanocages hold the potential to be used as nanotools for LSECs modulation, potentially impacting key biological processes such as tumor cell extravasation and hepatic immunity to invading metastatic cells or a tolerogenic state in intrahepatic immune cells in autoimmune diseases.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c00316</identifier><identifier>PMID: 34009950</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2021-06, Vol.15 (6), p.9701-9716</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-48669857cf5ef70a9689dfa50b1dff7c963bd6558178d17b55296f2189d395f43</citedby><cites>FETCH-LOGICAL-a333t-48669857cf5ef70a9689dfa50b1dff7c963bd6558178d17b55296f2189d395f43</cites><orcidid>0000-0001-6010-2947 ; 0000-0002-9016-410X ; 0000-0002-4262-0406 ; 0000-0003-1024-9128 ; 0000-0002-0689-5998 ; 0000-0002-0239-9532 ; 0000-0002-2152-6517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34009950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Talamini, Laura</creatorcontrib><creatorcontrib>Picchetti, Pierre</creatorcontrib><creatorcontrib>Ferreira, Lorena Maria</creatorcontrib><creatorcontrib>Sitia, Giovanni</creatorcontrib><creatorcontrib>Russo, Luca</creatorcontrib><creatorcontrib>Violatto, Martina B</creatorcontrib><creatorcontrib>Travaglini, Leana</creatorcontrib><creatorcontrib>Fernandez Alarcon, Jennifer</creatorcontrib><creatorcontrib>Righelli, Lucrezia</creatorcontrib><creatorcontrib>Bigini, Paolo</creatorcontrib><creatorcontrib>De Cola, Luisa</creatorcontrib><title>Organosilica Cages Target Hepatic Sinusoidal Endothelial Cells Avoiding Macrophage Filtering</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Over the last years, advancements in the use of nanoparticles for biomedical applications have clearly showcased their potential for the preparation of improved imaging and drug-delivery systems. However, compared to the vast number of currently studied nanoparticles for such applications, only a few successfully translate into clinical practice. A common “barrier” that prevents nanoparticles from efficiently delivering their payload to the target site after administration is related to liver filtering, mainly due to nanoparticle uptake by macrophages. This work reports the physicochemical and biological investigation of disulfide-bridged organosilica nanoparticles with cage-like morphology, OSCs, assessing in detail their bioaccumulation in vivo. The fate of intravenously injected 20 nm OSCs was investigated in both healthy and tumor-bearing mice. Interestingly, OSCs exclusively colocalize with hepatic sinusoidal endothelial cells (LSECs) while avoiding Kupffer-cell uptake (less than 6%) under both physiological and pathological conditions. Our findings suggest that organosilica nanocages hold the potential to be used as nanotools for LSECs modulation, potentially impacting key biological processes such as tumor cell extravasation and hepatic immunity to invading metastatic cells or a tolerogenic state in intrahepatic immune cells in autoimmune diseases.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMobk7P3iRHQbolzZI2x1E2Jyg7OMGDENI06TK6tiat4L83srqbp3wkz_vw5QXgFqMpRjGeSeVrWTdTrBAimJ2BMeaERShl7-enmeIRuPJ-jxBN0oRdghGZI8Q5RWPwsXFlEHhbWSVhJkvt4Va6UndwrVvZWQVfbd37xhaygsu6aLqdrmyYM11VHi6-woutS_gilWvaXRDAla067cLlNbgwsvL6Zjgn4G213Gbr6Hnz-JQtniNJCOmiecoYT2miDNUmQZKzlBdGUpTjwphEcUbyglGa4iQtcJJTGnNmYhwowqmZkwm4P3pb13z22nfiYL0K-8laN70XcQhwgihiAZ0d0bCt904b0Tp7kO5bYCR-KxVDpWKoNCTuBnmfH3Rx4v86DMDDEQhJsW96V4e__qv7ASklgew</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>Talamini, Laura</creator><creator>Picchetti, Pierre</creator><creator>Ferreira, Lorena Maria</creator><creator>Sitia, Giovanni</creator><creator>Russo, Luca</creator><creator>Violatto, Martina B</creator><creator>Travaglini, Leana</creator><creator>Fernandez Alarcon, Jennifer</creator><creator>Righelli, Lucrezia</creator><creator>Bigini, Paolo</creator><creator>De Cola, Luisa</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6010-2947</orcidid><orcidid>https://orcid.org/0000-0002-9016-410X</orcidid><orcidid>https://orcid.org/0000-0002-4262-0406</orcidid><orcidid>https://orcid.org/0000-0003-1024-9128</orcidid><orcidid>https://orcid.org/0000-0002-0689-5998</orcidid><orcidid>https://orcid.org/0000-0002-0239-9532</orcidid><orcidid>https://orcid.org/0000-0002-2152-6517</orcidid></search><sort><creationdate>20210622</creationdate><title>Organosilica Cages Target Hepatic Sinusoidal Endothelial Cells Avoiding Macrophage Filtering</title><author>Talamini, Laura ; Picchetti, Pierre ; Ferreira, Lorena Maria ; Sitia, Giovanni ; Russo, Luca ; Violatto, Martina B ; Travaglini, Leana ; Fernandez Alarcon, Jennifer ; Righelli, Lucrezia ; Bigini, Paolo ; De Cola, Luisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-48669857cf5ef70a9689dfa50b1dff7c963bd6558178d17b55296f2189d395f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talamini, Laura</creatorcontrib><creatorcontrib>Picchetti, Pierre</creatorcontrib><creatorcontrib>Ferreira, Lorena Maria</creatorcontrib><creatorcontrib>Sitia, Giovanni</creatorcontrib><creatorcontrib>Russo, Luca</creatorcontrib><creatorcontrib>Violatto, Martina B</creatorcontrib><creatorcontrib>Travaglini, Leana</creatorcontrib><creatorcontrib>Fernandez Alarcon, Jennifer</creatorcontrib><creatorcontrib>Righelli, Lucrezia</creatorcontrib><creatorcontrib>Bigini, Paolo</creatorcontrib><creatorcontrib>De Cola, Luisa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talamini, Laura</au><au>Picchetti, Pierre</au><au>Ferreira, Lorena Maria</au><au>Sitia, Giovanni</au><au>Russo, Luca</au><au>Violatto, Martina B</au><au>Travaglini, Leana</au><au>Fernandez Alarcon, Jennifer</au><au>Righelli, Lucrezia</au><au>Bigini, Paolo</au><au>De Cola, Luisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organosilica Cages Target Hepatic Sinusoidal Endothelial Cells Avoiding Macrophage Filtering</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-06-22</date><risdate>2021</risdate><volume>15</volume><issue>6</issue><spage>9701</spage><epage>9716</epage><pages>9701-9716</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Over the last years, advancements in the use of nanoparticles for biomedical applications have clearly showcased their potential for the preparation of improved imaging and drug-delivery systems. However, compared to the vast number of currently studied nanoparticles for such applications, only a few successfully translate into clinical practice. A common “barrier” that prevents nanoparticles from efficiently delivering their payload to the target site after administration is related to liver filtering, mainly due to nanoparticle uptake by macrophages. This work reports the physicochemical and biological investigation of disulfide-bridged organosilica nanoparticles with cage-like morphology, OSCs, assessing in detail their bioaccumulation in vivo. The fate of intravenously injected 20 nm OSCs was investigated in both healthy and tumor-bearing mice. Interestingly, OSCs exclusively colocalize with hepatic sinusoidal endothelial cells (LSECs) while avoiding Kupffer-cell uptake (less than 6%) under both physiological and pathological conditions. Our findings suggest that organosilica nanocages hold the potential to be used as nanotools for LSECs modulation, potentially impacting key biological processes such as tumor cell extravasation and hepatic immunity to invading metastatic cells or a tolerogenic state in intrahepatic immune cells in autoimmune diseases.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34009950</pmid><doi>10.1021/acsnano.1c00316</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6010-2947</orcidid><orcidid>https://orcid.org/0000-0002-9016-410X</orcidid><orcidid>https://orcid.org/0000-0002-4262-0406</orcidid><orcidid>https://orcid.org/0000-0003-1024-9128</orcidid><orcidid>https://orcid.org/0000-0002-0689-5998</orcidid><orcidid>https://orcid.org/0000-0002-0239-9532</orcidid><orcidid>https://orcid.org/0000-0002-2152-6517</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-06, Vol.15 (6), p.9701-9716
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2529930506
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Organosilica Cages Target Hepatic Sinusoidal Endothelial Cells Avoiding Macrophage Filtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organosilica%20Cages%20Target%20Hepatic%20Sinusoidal%20Endothelial%20Cells%20Avoiding%20Macrophage%20Filtering&rft.jtitle=ACS%20nano&rft.au=Talamini,%20Laura&rft.date=2021-06-22&rft.volume=15&rft.issue=6&rft.spage=9701&rft.epage=9716&rft.pages=9701-9716&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c00316&rft_dat=%3Cproquest_cross%3E2529930506%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a333t-48669857cf5ef70a9689dfa50b1dff7c963bd6558178d17b55296f2189d395f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2529930506&rft_id=info:pmid/34009950&rfr_iscdi=true