Loading…

Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms

We demonstrate nonequilibrium steady-state photon transport through a chain of five coupled artificial atoms simulating the driven-dissipative Bose-Hubbard model. Using transmission spectroscopy, we show that the system retains many-particle coherence despite being coupled strongly to two open space...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2021-05, Vol.126 (18), p.180503-180503, Article 180503
Main Authors: Fedorov, G P, Remizov, S V, Shapiro, D S, Pogosov, W V, Egorova, E, Tsitsilin, I, Andronik, M, Dobronosova, A A, Rodionov, I A, Astafiev, O V, Ustinov, A V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate nonequilibrium steady-state photon transport through a chain of five coupled artificial atoms simulating the driven-dissipative Bose-Hubbard model. Using transmission spectroscopy, we show that the system retains many-particle coherence despite being coupled strongly to two open spaces. We find that cross-Kerr interaction between system states allows high-contrast spectroscopic visualization of the emergent energy bands. For vanishing disorder, we observe the transition of the system from the linear to nonlinear regime of photon blockade in excellent agreement with the input-output theory. Finally, we show how controllable disorder introduced to the system suppresses nonlocal photon transmission. We argue that proposed architecture may be applied to analog simulation of many-body Floquet dynamics with even larger arrays of artificial atoms paving an alternative way towards quantum supremacy.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.126.180503