Loading…
Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes
The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Jani...
Saved in:
Published in: | Physical review letters 2021-05, Vol.126 (18), p.181301-181301, Article 181301 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-e8836f7cf4838df9c53c1ed4bd4e890a42cd726328d62fc4cc0374cea71474f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-e8836f7cf4838df9c53c1ed4bd4e890a42cd726328d62fc4cc0374cea71474f23 |
container_end_page | 181301 |
container_issue | 18 |
container_start_page | 181301 |
container_title | Physical review letters |
container_volume | 126 |
creator | Brahma, Suddhasattwa Chen, Che-Yu Yeom, Dong-Han |
description | The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Janis algorithm. The rotating solution is nonsingular everywhere and it reduces to the Kerr black hole asymptotically. In different regions of the parameter space, the solution describes (1) a wormhole without event horizon (which, we show, is almost ruled out by observations), (2) a black hole with a spacelike transition surface inside the event horizon, or (3) a black hole with a timelike transition region inside the inner horizon. It is shown how fundamental parameters of LQG can be constrained by the observational implications of the shadow cast by this object. The causal structure of our solution depends crucially only on the spacelike transition surface of the nonrotating seed metric, while being agnostic about specific details of the latter, and therefore captures universal features of an effective rotating, nonsingular black hole in LQG. |
doi_str_mv | 10.1103/PhysRevLett.126.181301 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2531220473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524949395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-e8836f7cf4838df9c53c1ed4bd4e890a42cd726328d62fc4cc0374cea71474f23</originalsourceid><addsrcrecordid>eNpdkUtPwzAQhC0EglL4C8gSFy4pfjV2jlBBQap4Cc7BddYQSOJiO5X673EpIMRptdI3o90ZhI4oGVFK-Ond6yo8wHIGMY4oy0dUUU7oFhpQIotMUiq20YAQTrOCELmH9kN4I4QkVO2iPS4IVVKJAXp-hBDr7gXPnFvg-153sW_x1OtlHVfYetfi23kAv9Sxdp1u8MR1AT566AwE7Cy-SXvS9432-MFF_WV23mjzjq9cA-EA7VjdBDj8nkP0dHnxOLnKZrfT68nZLDOcFzEDpXhupbFCcVXZwoy5oVCJeSVAFUQLZirJcs5UlTNrhDGES2FASyqksIwP0cnGd-FdOi_Esq2DgabRHbg-lGzMKWNESJ7Q43_om-t9em5NMVGIghfjROUbyngXggdbLnzdar8qKSnXHZR_OihTsOWmgyQ8-rbv5y1Uv7Kf0PknUBGGFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524949395</pqid></control><display><type>article</type><title>Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Brahma, Suddhasattwa ; Chen, Che-Yu ; Yeom, Dong-Han</creator><creatorcontrib>Brahma, Suddhasattwa ; Chen, Che-Yu ; Yeom, Dong-Han</creatorcontrib><description>The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Janis algorithm. The rotating solution is nonsingular everywhere and it reduces to the Kerr black hole asymptotically. In different regions of the parameter space, the solution describes (1) a wormhole without event horizon (which, we show, is almost ruled out by observations), (2) a black hole with a spacelike transition surface inside the event horizon, or (3) a black hole with a timelike transition region inside the inner horizon. It is shown how fundamental parameters of LQG can be constrained by the observational implications of the shadow cast by this object. The causal structure of our solution depends crucially only on the spacelike transition surface of the nonrotating seed metric, while being agnostic about specific details of the latter, and therefore captures universal features of an effective rotating, nonsingular black hole in LQG.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.126.181301</identifier><identifier>PMID: 34018784</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Algorithms ; Black holes ; Event horizon ; Parameters ; Quantum gravity ; Rotation</subject><ispartof>Physical review letters, 2021-05, Vol.126 (18), p.181301-181301, Article 181301</ispartof><rights>Copyright American Physical Society May 7, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-e8836f7cf4838df9c53c1ed4bd4e890a42cd726328d62fc4cc0374cea71474f23</citedby><cites>FETCH-LOGICAL-c339t-e8836f7cf4838df9c53c1ed4bd4e890a42cd726328d62fc4cc0374cea71474f23</cites><orcidid>0000-0001-8312-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34018784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brahma, Suddhasattwa</creatorcontrib><creatorcontrib>Chen, Che-Yu</creatorcontrib><creatorcontrib>Yeom, Dong-Han</creatorcontrib><title>Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Janis algorithm. The rotating solution is nonsingular everywhere and it reduces to the Kerr black hole asymptotically. In different regions of the parameter space, the solution describes (1) a wormhole without event horizon (which, we show, is almost ruled out by observations), (2) a black hole with a spacelike transition surface inside the event horizon, or (3) a black hole with a timelike transition region inside the inner horizon. It is shown how fundamental parameters of LQG can be constrained by the observational implications of the shadow cast by this object. The causal structure of our solution depends crucially only on the spacelike transition surface of the nonrotating seed metric, while being agnostic about specific details of the latter, and therefore captures universal features of an effective rotating, nonsingular black hole in LQG.</description><subject>Algorithms</subject><subject>Black holes</subject><subject>Event horizon</subject><subject>Parameters</subject><subject>Quantum gravity</subject><subject>Rotation</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkUtPwzAQhC0EglL4C8gSFy4pfjV2jlBBQap4Cc7BddYQSOJiO5X673EpIMRptdI3o90ZhI4oGVFK-Ond6yo8wHIGMY4oy0dUUU7oFhpQIotMUiq20YAQTrOCELmH9kN4I4QkVO2iPS4IVVKJAXp-hBDr7gXPnFvg-153sW_x1OtlHVfYetfi23kAv9Sxdp1u8MR1AT566AwE7Cy-SXvS9432-MFF_WV23mjzjq9cA-EA7VjdBDj8nkP0dHnxOLnKZrfT68nZLDOcFzEDpXhupbFCcVXZwoy5oVCJeSVAFUQLZirJcs5UlTNrhDGES2FASyqksIwP0cnGd-FdOi_Esq2DgabRHbg-lGzMKWNESJ7Q43_om-t9em5NMVGIghfjROUbyngXggdbLnzdar8qKSnXHZR_OihTsOWmgyQ8-rbv5y1Uv7Kf0PknUBGGFQ</recordid><startdate>20210507</startdate><enddate>20210507</enddate><creator>Brahma, Suddhasattwa</creator><creator>Chen, Che-Yu</creator><creator>Yeom, Dong-Han</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8312-759X</orcidid></search><sort><creationdate>20210507</creationdate><title>Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes</title><author>Brahma, Suddhasattwa ; Chen, Che-Yu ; Yeom, Dong-Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-e8836f7cf4838df9c53c1ed4bd4e890a42cd726328d62fc4cc0374cea71474f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Black holes</topic><topic>Event horizon</topic><topic>Parameters</topic><topic>Quantum gravity</topic><topic>Rotation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brahma, Suddhasattwa</creatorcontrib><creatorcontrib>Chen, Che-Yu</creatorcontrib><creatorcontrib>Yeom, Dong-Han</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brahma, Suddhasattwa</au><au>Chen, Che-Yu</au><au>Yeom, Dong-Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2021-05-07</date><risdate>2021</risdate><volume>126</volume><issue>18</issue><spage>181301</spage><epage>181301</epage><pages>181301-181301</pages><artnum>181301</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Janis algorithm. The rotating solution is nonsingular everywhere and it reduces to the Kerr black hole asymptotically. In different regions of the parameter space, the solution describes (1) a wormhole without event horizon (which, we show, is almost ruled out by observations), (2) a black hole with a spacelike transition surface inside the event horizon, or (3) a black hole with a timelike transition region inside the inner horizon. It is shown how fundamental parameters of LQG can be constrained by the observational implications of the shadow cast by this object. The causal structure of our solution depends crucially only on the spacelike transition surface of the nonrotating seed metric, while being agnostic about specific details of the latter, and therefore captures universal features of an effective rotating, nonsingular black hole in LQG.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>34018784</pmid><doi>10.1103/PhysRevLett.126.181301</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8312-759X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2021-05, Vol.126 (18), p.181301-181301, Article 181301 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2531220473 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Algorithms Black holes Event horizon Parameters Quantum gravity Rotation |
title | Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20Loop%20Quantum%20Gravity%20from%20Observational%20Consequences%20of%20Nonsingular%20Rotating%20Black%20Holes&rft.jtitle=Physical%20review%20letters&rft.au=Brahma,%20Suddhasattwa&rft.date=2021-05-07&rft.volume=126&rft.issue=18&rft.spage=181301&rft.epage=181301&rft.pages=181301-181301&rft.artnum=181301&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.126.181301&rft_dat=%3Cproquest_cross%3E2524949395%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-e8836f7cf4838df9c53c1ed4bd4e890a42cd726328d62fc4cc0374cea71474f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2524949395&rft_id=info:pmid/34018784&rfr_iscdi=true |