Loading…

Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes

The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Jani...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2021-05, Vol.126 (18), p.181301-181301, Article 181301
Main Authors: Brahma, Suddhasattwa, Chen, Che-Yu, Yeom, Dong-Han
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-e8836f7cf4838df9c53c1ed4bd4e890a42cd726328d62fc4cc0374cea71474f23
cites cdi_FETCH-LOGICAL-c339t-e8836f7cf4838df9c53c1ed4bd4e890a42cd726328d62fc4cc0374cea71474f23
container_end_page 181301
container_issue 18
container_start_page 181301
container_title Physical review letters
container_volume 126
creator Brahma, Suddhasattwa
Chen, Che-Yu
Yeom, Dong-Han
description The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Janis algorithm. The rotating solution is nonsingular everywhere and it reduces to the Kerr black hole asymptotically. In different regions of the parameter space, the solution describes (1) a wormhole without event horizon (which, we show, is almost ruled out by observations), (2) a black hole with a spacelike transition surface inside the event horizon, or (3) a black hole with a timelike transition region inside the inner horizon. It is shown how fundamental parameters of LQG can be constrained by the observational implications of the shadow cast by this object. The causal structure of our solution depends crucially only on the spacelike transition surface of the nonrotating seed metric, while being agnostic about specific details of the latter, and therefore captures universal features of an effective rotating, nonsingular black hole in LQG.
doi_str_mv 10.1103/PhysRevLett.126.181301
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2531220473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524949395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-e8836f7cf4838df9c53c1ed4bd4e890a42cd726328d62fc4cc0374cea71474f23</originalsourceid><addsrcrecordid>eNpdkUtPwzAQhC0EglL4C8gSFy4pfjV2jlBBQap4Cc7BddYQSOJiO5X673EpIMRptdI3o90ZhI4oGVFK-Ond6yo8wHIGMY4oy0dUUU7oFhpQIotMUiq20YAQTrOCELmH9kN4I4QkVO2iPS4IVVKJAXp-hBDr7gXPnFvg-153sW_x1OtlHVfYetfi23kAv9Sxdp1u8MR1AT566AwE7Cy-SXvS9432-MFF_WV23mjzjq9cA-EA7VjdBDj8nkP0dHnxOLnKZrfT68nZLDOcFzEDpXhupbFCcVXZwoy5oVCJeSVAFUQLZirJcs5UlTNrhDGES2FASyqksIwP0cnGd-FdOi_Esq2DgabRHbg-lGzMKWNESJ7Q43_om-t9em5NMVGIghfjROUbyngXggdbLnzdar8qKSnXHZR_OihTsOWmgyQ8-rbv5y1Uv7Kf0PknUBGGFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524949395</pqid></control><display><type>article</type><title>Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Brahma, Suddhasattwa ; Chen, Che-Yu ; Yeom, Dong-Han</creator><creatorcontrib>Brahma, Suddhasattwa ; Chen, Che-Yu ; Yeom, Dong-Han</creatorcontrib><description>The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Janis algorithm. The rotating solution is nonsingular everywhere and it reduces to the Kerr black hole asymptotically. In different regions of the parameter space, the solution describes (1) a wormhole without event horizon (which, we show, is almost ruled out by observations), (2) a black hole with a spacelike transition surface inside the event horizon, or (3) a black hole with a timelike transition region inside the inner horizon. It is shown how fundamental parameters of LQG can be constrained by the observational implications of the shadow cast by this object. The causal structure of our solution depends crucially only on the spacelike transition surface of the nonrotating seed metric, while being agnostic about specific details of the latter, and therefore captures universal features of an effective rotating, nonsingular black hole in LQG.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.126.181301</identifier><identifier>PMID: 34018784</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Algorithms ; Black holes ; Event horizon ; Parameters ; Quantum gravity ; Rotation</subject><ispartof>Physical review letters, 2021-05, Vol.126 (18), p.181301-181301, Article 181301</ispartof><rights>Copyright American Physical Society May 7, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-e8836f7cf4838df9c53c1ed4bd4e890a42cd726328d62fc4cc0374cea71474f23</citedby><cites>FETCH-LOGICAL-c339t-e8836f7cf4838df9c53c1ed4bd4e890a42cd726328d62fc4cc0374cea71474f23</cites><orcidid>0000-0001-8312-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34018784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brahma, Suddhasattwa</creatorcontrib><creatorcontrib>Chen, Che-Yu</creatorcontrib><creatorcontrib>Yeom, Dong-Han</creatorcontrib><title>Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Janis algorithm. The rotating solution is nonsingular everywhere and it reduces to the Kerr black hole asymptotically. In different regions of the parameter space, the solution describes (1) a wormhole without event horizon (which, we show, is almost ruled out by observations), (2) a black hole with a spacelike transition surface inside the event horizon, or (3) a black hole with a timelike transition region inside the inner horizon. It is shown how fundamental parameters of LQG can be constrained by the observational implications of the shadow cast by this object. The causal structure of our solution depends crucially only on the spacelike transition surface of the nonrotating seed metric, while being agnostic about specific details of the latter, and therefore captures universal features of an effective rotating, nonsingular black hole in LQG.</description><subject>Algorithms</subject><subject>Black holes</subject><subject>Event horizon</subject><subject>Parameters</subject><subject>Quantum gravity</subject><subject>Rotation</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkUtPwzAQhC0EglL4C8gSFy4pfjV2jlBBQap4Cc7BddYQSOJiO5X673EpIMRptdI3o90ZhI4oGVFK-Ond6yo8wHIGMY4oy0dUUU7oFhpQIotMUiq20YAQTrOCELmH9kN4I4QkVO2iPS4IVVKJAXp-hBDr7gXPnFvg-153sW_x1OtlHVfYetfi23kAv9Sxdp1u8MR1AT566AwE7Cy-SXvS9432-MFF_WV23mjzjq9cA-EA7VjdBDj8nkP0dHnxOLnKZrfT68nZLDOcFzEDpXhupbFCcVXZwoy5oVCJeSVAFUQLZirJcs5UlTNrhDGES2FASyqksIwP0cnGd-FdOi_Esq2DgabRHbg-lGzMKWNESJ7Q43_om-t9em5NMVGIghfjROUbyngXggdbLnzdar8qKSnXHZR_OihTsOWmgyQ8-rbv5y1Uv7Kf0PknUBGGFQ</recordid><startdate>20210507</startdate><enddate>20210507</enddate><creator>Brahma, Suddhasattwa</creator><creator>Chen, Che-Yu</creator><creator>Yeom, Dong-Han</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8312-759X</orcidid></search><sort><creationdate>20210507</creationdate><title>Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes</title><author>Brahma, Suddhasattwa ; Chen, Che-Yu ; Yeom, Dong-Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-e8836f7cf4838df9c53c1ed4bd4e890a42cd726328d62fc4cc0374cea71474f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Black holes</topic><topic>Event horizon</topic><topic>Parameters</topic><topic>Quantum gravity</topic><topic>Rotation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brahma, Suddhasattwa</creatorcontrib><creatorcontrib>Chen, Che-Yu</creatorcontrib><creatorcontrib>Yeom, Dong-Han</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brahma, Suddhasattwa</au><au>Chen, Che-Yu</au><au>Yeom, Dong-Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2021-05-07</date><risdate>2021</risdate><volume>126</volume><issue>18</issue><spage>181301</spage><epage>181301</epage><pages>181301-181301</pages><artnum>181301</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The lack of rotating black hole models, which are typically found in nature, in loop quantum gravity (LQG) substantially hinders the progress of testing LQG from observations. Starting with a nonrotating LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Janis algorithm. The rotating solution is nonsingular everywhere and it reduces to the Kerr black hole asymptotically. In different regions of the parameter space, the solution describes (1) a wormhole without event horizon (which, we show, is almost ruled out by observations), (2) a black hole with a spacelike transition surface inside the event horizon, or (3) a black hole with a timelike transition region inside the inner horizon. It is shown how fundamental parameters of LQG can be constrained by the observational implications of the shadow cast by this object. The causal structure of our solution depends crucially only on the spacelike transition surface of the nonrotating seed metric, while being agnostic about specific details of the latter, and therefore captures universal features of an effective rotating, nonsingular black hole in LQG.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>34018784</pmid><doi>10.1103/PhysRevLett.126.181301</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8312-759X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-05, Vol.126 (18), p.181301-181301, Article 181301
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2531220473
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Algorithms
Black holes
Event horizon
Parameters
Quantum gravity
Rotation
title Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20Loop%20Quantum%20Gravity%20from%20Observational%20Consequences%20of%20Nonsingular%20Rotating%20Black%20Holes&rft.jtitle=Physical%20review%20letters&rft.au=Brahma,%20Suddhasattwa&rft.date=2021-05-07&rft.volume=126&rft.issue=18&rft.spage=181301&rft.epage=181301&rft.pages=181301-181301&rft.artnum=181301&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.126.181301&rft_dat=%3Cproquest_cross%3E2524949395%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-e8836f7cf4838df9c53c1ed4bd4e890a42cd726328d62fc4cc0374cea71474f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2524949395&rft_id=info:pmid/34018784&rfr_iscdi=true