Loading…
Plant viral proteins and fibrillarin: the link to complete the infective cycle
The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nuc...
Saved in:
Published in: | Molecular biology reports 2021-05, Vol.48 (5), p.4677-4686 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle. |
---|---|
ISSN: | 0301-4851 1573-4978 |
DOI: | 10.1007/s11033-021-06401-1 |