Loading…
Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis
Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and underlying mechanism of lncRNA X-inactive specific transcript (XIST) in cerebral ischemia/reperfusion (I/R) injury. An oxygen-g...
Saved in:
Published in: | Neurochemical research 2021-08, Vol.46 (8), p.2167-2180 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c441t-c59a1f33584455d524266c40e45384ecf83c85ae89eb76a781469c4a77d93af13 |
---|---|
cites | cdi_FETCH-LOGICAL-c441t-c59a1f33584455d524266c40e45384ecf83c85ae89eb76a781469c4a77d93af13 |
container_end_page | 2180 |
container_issue | 8 |
container_start_page | 2167 |
container_title | Neurochemical research |
container_volume | 46 |
creator | Wang, Jingtao Fu, Zhenqiang Wang, Menghan Lu, Jingjing Yang, Hecheng Lu, Hong |
description | Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and underlying mechanism of lncRNA X-inactive specific transcript (XIST) in cerebral ischemia/reperfusion (I/R) injury. An oxygen-glucose deprivation/reperfusion (OGD/R) model in PC12 cells was applied to mimic cerebral I/R injury in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) model was performed in mice to mimic cerebral I/R injury in vivo. Real-time PCR, fluorescence in situ hybridization (FISH) assay, and western blotting assay were carried out to detect the expression levels of XIST, miR-362, and Rho-related coiled-coil containing protein kinase 2 (ROCK2). The functional experiments were measured by CCK-8 assay, immumofluorescence assay, ELISA assay, TUNEL, and TTC staining. Results displayed that XIST was elevated in PC12 cells with OGD/R, as well as in the ischemic penumbra of mice with MCAO/R. In vitro, knockdown of XIST facilitated cell survival, inhibited apoptosis, and alleviated inflammation injury in OGDR PC12 cells. In vivo, inhibition of XIST remarkably reduced the neurological impairments, promoted neuron proliferation, and suppressed apoptosis in MCAO mice. Mechanistically, XIST acted as a competing endogenous RNA of miR-362 to regulate the downstream gene ROCK2. In conclusion, depletion of XIST attenuated I/R-induced neurological impairment and inflammatory response via the miR-362/ROCK2 axis. These findings offer a potential novel strategy for ischemic stroke therapy. |
doi_str_mv | 10.1007/s11064-021-03354-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2532260050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548026576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-c59a1f33584455d524266c40e45384ecf83c85ae89eb76a781469c4a77d93af13</originalsourceid><addsrcrecordid>eNp9kU9vEzEQxa0K1IbCF-ihssSFy5Lx3909RlGBqJUqhSBxsxxnNtl0d53aa5V-exxSQOLAyYf3e2888wi5YvCRAZTTyBhoWQBnBQihZKHPyISpUhS6BvGKTEBkWbAaLsibGPcA2cbZObkQEkSZmQnZ3w7ePWz800B9Q78vvq7obBxxSHbESOcYcB1sRxfR7bBv7XSJBwxNiq0f6GLYp_BMV7vg03ZHl7hNnR2PSo7q22UhNJ8u7-e3nM5-tPEted3YLuK7l_eSfPt0s5p_Ke7uPy_ms7vCScnGwqnasibvU0mp1EZxybV2ElAqUUl0TSVcpSxWNa5LbcuKSV07actyUwvbMHFJPpxyD8E_Joyj6dvosOvsgD5Fw5XgXAMoyOj7f9C9T2HIv8uUrIBrVepM8RPlgo8xYGMOoe1teDYMzLEJc2rC5OOaX02Yo-n6JTqte9z8sfw-fQbECYhZGrYY_s7-T-xPxduRFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548026576</pqid></control><display><type>article</type><title>Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis</title><source>Springer Nature</source><creator>Wang, Jingtao ; Fu, Zhenqiang ; Wang, Menghan ; Lu, Jingjing ; Yang, Hecheng ; Lu, Hong</creator><creatorcontrib>Wang, Jingtao ; Fu, Zhenqiang ; Wang, Menghan ; Lu, Jingjing ; Yang, Hecheng ; Lu, Hong</creatorcontrib><description>Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and underlying mechanism of lncRNA X-inactive specific transcript (XIST) in cerebral ischemia/reperfusion (I/R) injury. An oxygen-glucose deprivation/reperfusion (OGD/R) model in PC12 cells was applied to mimic cerebral I/R injury in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) model was performed in mice to mimic cerebral I/R injury in vivo. Real-time PCR, fluorescence in situ hybridization (FISH) assay, and western blotting assay were carried out to detect the expression levels of XIST, miR-362, and Rho-related coiled-coil containing protein kinase 2 (ROCK2). The functional experiments were measured by CCK-8 assay, immumofluorescence assay, ELISA assay, TUNEL, and TTC staining. Results displayed that XIST was elevated in PC12 cells with OGD/R, as well as in the ischemic penumbra of mice with MCAO/R. In vitro, knockdown of XIST facilitated cell survival, inhibited apoptosis, and alleviated inflammation injury in OGDR PC12 cells. In vivo, inhibition of XIST remarkably reduced the neurological impairments, promoted neuron proliferation, and suppressed apoptosis in MCAO mice. Mechanistically, XIST acted as a competing endogenous RNA of miR-362 to regulate the downstream gene ROCK2. In conclusion, depletion of XIST attenuated I/R-induced neurological impairment and inflammatory response via the miR-362/ROCK2 axis. These findings offer a potential novel strategy for ischemic stroke therapy.</description><identifier>ISSN: 0364-3190</identifier><identifier>EISSN: 1573-6903</identifier><identifier>DOI: 10.1007/s11064-021-03354-6</identifier><identifier>PMID: 34037903</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Apoptosis ; Assaying ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell Hypoxia - physiology ; Cell survival ; Cerebral blood flow ; Cholecystokinin ; Depletion ; Deprivation ; Enzyme-linked immunosorbent assay ; Fluorescence ; Fluorescence in situ hybridization ; Gene Knockdown Techniques ; Glucose ; Glucose - deficiency ; Infarction, Middle Cerebral Artery - metabolism ; Inflammation ; Inflammation - metabolism ; Inflammatory response ; Injuries ; Ischemia ; Kinases ; Male ; Mice ; Mice, Inbred C57BL ; MicroRNAs - metabolism ; Neurochemistry ; Neurological complications ; Neurology ; Neurosciences ; Non-coding RNA ; Occlusion ; Original Paper ; Oxygen ; Oxygen - metabolism ; Pathogenesis ; PC12 Cells ; Pheochromocytoma cells ; Protein kinase ; Rats ; Reperfusion ; Reperfusion Injury - metabolism ; rho-Associated Kinases - metabolism ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; Transcription ; Western blotting</subject><ispartof>Neurochemical research, 2021-08, Vol.46 (8), p.2167-2180</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-c59a1f33584455d524266c40e45384ecf83c85ae89eb76a781469c4a77d93af13</citedby><cites>FETCH-LOGICAL-c441t-c59a1f33584455d524266c40e45384ecf83c85ae89eb76a781469c4a77d93af13</cites><orcidid>0000-0001-8508-7616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34037903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jingtao</creatorcontrib><creatorcontrib>Fu, Zhenqiang</creatorcontrib><creatorcontrib>Wang, Menghan</creatorcontrib><creatorcontrib>Lu, Jingjing</creatorcontrib><creatorcontrib>Yang, Hecheng</creatorcontrib><creatorcontrib>Lu, Hong</creatorcontrib><title>Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis</title><title>Neurochemical research</title><addtitle>Neurochem Res</addtitle><addtitle>Neurochem Res</addtitle><description>Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and underlying mechanism of lncRNA X-inactive specific transcript (XIST) in cerebral ischemia/reperfusion (I/R) injury. An oxygen-glucose deprivation/reperfusion (OGD/R) model in PC12 cells was applied to mimic cerebral I/R injury in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) model was performed in mice to mimic cerebral I/R injury in vivo. Real-time PCR, fluorescence in situ hybridization (FISH) assay, and western blotting assay were carried out to detect the expression levels of XIST, miR-362, and Rho-related coiled-coil containing protein kinase 2 (ROCK2). The functional experiments were measured by CCK-8 assay, immumofluorescence assay, ELISA assay, TUNEL, and TTC staining. Results displayed that XIST was elevated in PC12 cells with OGD/R, as well as in the ischemic penumbra of mice with MCAO/R. In vitro, knockdown of XIST facilitated cell survival, inhibited apoptosis, and alleviated inflammation injury in OGDR PC12 cells. In vivo, inhibition of XIST remarkably reduced the neurological impairments, promoted neuron proliferation, and suppressed apoptosis in MCAO mice. Mechanistically, XIST acted as a competing endogenous RNA of miR-362 to regulate the downstream gene ROCK2. In conclusion, depletion of XIST attenuated I/R-induced neurological impairment and inflammatory response via the miR-362/ROCK2 axis. These findings offer a potential novel strategy for ischemic stroke therapy.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Assaying</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell Hypoxia - physiology</subject><subject>Cell survival</subject><subject>Cerebral blood flow</subject><subject>Cholecystokinin</subject><subject>Depletion</subject><subject>Deprivation</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Gene Knockdown Techniques</subject><subject>Glucose</subject><subject>Glucose - deficiency</subject><subject>Infarction, Middle Cerebral Artery - metabolism</subject><subject>Inflammation</subject><subject>Inflammation - metabolism</subject><subject>Inflammatory response</subject><subject>Injuries</subject><subject>Ischemia</subject><subject>Kinases</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>MicroRNAs - metabolism</subject><subject>Neurochemistry</subject><subject>Neurological complications</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Non-coding RNA</subject><subject>Occlusion</subject><subject>Original Paper</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Pathogenesis</subject><subject>PC12 Cells</subject><subject>Pheochromocytoma cells</subject><subject>Protein kinase</subject><subject>Rats</subject><subject>Reperfusion</subject><subject>Reperfusion Injury - metabolism</subject><subject>rho-Associated Kinases - metabolism</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>Transcription</subject><subject>Western blotting</subject><issn>0364-3190</issn><issn>1573-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vEzEQxa0K1IbCF-ihssSFy5Lx3909RlGBqJUqhSBxsxxnNtl0d53aa5V-exxSQOLAyYf3e2888wi5YvCRAZTTyBhoWQBnBQihZKHPyISpUhS6BvGKTEBkWbAaLsibGPcA2cbZObkQEkSZmQnZ3w7ePWz800B9Q78vvq7obBxxSHbESOcYcB1sRxfR7bBv7XSJBwxNiq0f6GLYp_BMV7vg03ZHl7hNnR2PSo7q22UhNJ8u7-e3nM5-tPEted3YLuK7l_eSfPt0s5p_Ke7uPy_ms7vCScnGwqnasibvU0mp1EZxybV2ElAqUUl0TSVcpSxWNa5LbcuKSV07actyUwvbMHFJPpxyD8E_Joyj6dvosOvsgD5Fw5XgXAMoyOj7f9C9T2HIv8uUrIBrVepM8RPlgo8xYGMOoe1teDYMzLEJc2rC5OOaX02Yo-n6JTqte9z8sfw-fQbECYhZGrYY_s7-T-xPxduRFA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Wang, Jingtao</creator><creator>Fu, Zhenqiang</creator><creator>Wang, Menghan</creator><creator>Lu, Jingjing</creator><creator>Yang, Hecheng</creator><creator>Lu, Hong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8508-7616</orcidid></search><sort><creationdate>20210801</creationdate><title>Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis</title><author>Wang, Jingtao ; Fu, Zhenqiang ; Wang, Menghan ; Lu, Jingjing ; Yang, Hecheng ; Lu, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-c59a1f33584455d524266c40e45384ecf83c85ae89eb76a781469c4a77d93af13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Assaying</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell Hypoxia - physiology</topic><topic>Cell survival</topic><topic>Cerebral blood flow</topic><topic>Cholecystokinin</topic><topic>Depletion</topic><topic>Deprivation</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Gene Knockdown Techniques</topic><topic>Glucose</topic><topic>Glucose - deficiency</topic><topic>Infarction, Middle Cerebral Artery - metabolism</topic><topic>Inflammation</topic><topic>Inflammation - metabolism</topic><topic>Inflammatory response</topic><topic>Injuries</topic><topic>Ischemia</topic><topic>Kinases</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>MicroRNAs - metabolism</topic><topic>Neurochemistry</topic><topic>Neurological complications</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Non-coding RNA</topic><topic>Occlusion</topic><topic>Original Paper</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Pathogenesis</topic><topic>PC12 Cells</topic><topic>Pheochromocytoma cells</topic><topic>Protein kinase</topic><topic>Rats</topic><topic>Reperfusion</topic><topic>Reperfusion Injury - metabolism</topic><topic>rho-Associated Kinases - metabolism</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>Transcription</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingtao</creatorcontrib><creatorcontrib>Fu, Zhenqiang</creatorcontrib><creatorcontrib>Wang, Menghan</creatorcontrib><creatorcontrib>Lu, Jingjing</creatorcontrib><creatorcontrib>Yang, Hecheng</creatorcontrib><creatorcontrib>Lu, Hong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Neurochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jingtao</au><au>Fu, Zhenqiang</au><au>Wang, Menghan</au><au>Lu, Jingjing</au><au>Yang, Hecheng</au><au>Lu, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis</atitle><jtitle>Neurochemical research</jtitle><stitle>Neurochem Res</stitle><addtitle>Neurochem Res</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>46</volume><issue>8</issue><spage>2167</spage><epage>2180</epage><pages>2167-2180</pages><issn>0364-3190</issn><eissn>1573-6903</eissn><abstract>Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and underlying mechanism of lncRNA X-inactive specific transcript (XIST) in cerebral ischemia/reperfusion (I/R) injury. An oxygen-glucose deprivation/reperfusion (OGD/R) model in PC12 cells was applied to mimic cerebral I/R injury in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) model was performed in mice to mimic cerebral I/R injury in vivo. Real-time PCR, fluorescence in situ hybridization (FISH) assay, and western blotting assay were carried out to detect the expression levels of XIST, miR-362, and Rho-related coiled-coil containing protein kinase 2 (ROCK2). The functional experiments were measured by CCK-8 assay, immumofluorescence assay, ELISA assay, TUNEL, and TTC staining. Results displayed that XIST was elevated in PC12 cells with OGD/R, as well as in the ischemic penumbra of mice with MCAO/R. In vitro, knockdown of XIST facilitated cell survival, inhibited apoptosis, and alleviated inflammation injury in OGDR PC12 cells. In vivo, inhibition of XIST remarkably reduced the neurological impairments, promoted neuron proliferation, and suppressed apoptosis in MCAO mice. Mechanistically, XIST acted as a competing endogenous RNA of miR-362 to regulate the downstream gene ROCK2. In conclusion, depletion of XIST attenuated I/R-induced neurological impairment and inflammatory response via the miR-362/ROCK2 axis. These findings offer a potential novel strategy for ischemic stroke therapy.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34037903</pmid><doi>10.1007/s11064-021-03354-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8508-7616</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-3190 |
ispartof | Neurochemical research, 2021-08, Vol.46 (8), p.2167-2180 |
issn | 0364-3190 1573-6903 |
language | eng |
recordid | cdi_proquest_miscellaneous_2532260050 |
source | Springer Nature |
subjects | Animals Apoptosis Assaying Biochemistry Biomedical and Life Sciences Biomedicine Cell Biology Cell Hypoxia - physiology Cell survival Cerebral blood flow Cholecystokinin Depletion Deprivation Enzyme-linked immunosorbent assay Fluorescence Fluorescence in situ hybridization Gene Knockdown Techniques Glucose Glucose - deficiency Infarction, Middle Cerebral Artery - metabolism Inflammation Inflammation - metabolism Inflammatory response Injuries Ischemia Kinases Male Mice Mice, Inbred C57BL MicroRNAs - metabolism Neurochemistry Neurological complications Neurology Neurosciences Non-coding RNA Occlusion Original Paper Oxygen Oxygen - metabolism Pathogenesis PC12 Cells Pheochromocytoma cells Protein kinase Rats Reperfusion Reperfusion Injury - metabolism rho-Associated Kinases - metabolism RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism Transcription Western blotting |
title | Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knockdown%20of%20XIST%20Attenuates%20Cerebral%20Ischemia/Reperfusion%20Injury%20Through%20Regulation%20of%20miR-362/ROCK2%20Axis&rft.jtitle=Neurochemical%20research&rft.au=Wang,%20Jingtao&rft.date=2021-08-01&rft.volume=46&rft.issue=8&rft.spage=2167&rft.epage=2180&rft.pages=2167-2180&rft.issn=0364-3190&rft.eissn=1573-6903&rft_id=info:doi/10.1007/s11064-021-03354-6&rft_dat=%3Cproquest_cross%3E2548026576%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-c59a1f33584455d524266c40e45384ecf83c85ae89eb76a781469c4a77d93af13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548026576&rft_id=info:pmid/34037903&rfr_iscdi=true |