Loading…

Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis

Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and underlying mechanism of lncRNA X-inactive specific transcript (XIST) in cerebral ischemia/reperfusion (I/R) injury. An oxygen-g...

Full description

Saved in:
Bibliographic Details
Published in:Neurochemical research 2021-08, Vol.46 (8), p.2167-2180
Main Authors: Wang, Jingtao, Fu, Zhenqiang, Wang, Menghan, Lu, Jingjing, Yang, Hecheng, Lu, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-c59a1f33584455d524266c40e45384ecf83c85ae89eb76a781469c4a77d93af13
cites cdi_FETCH-LOGICAL-c441t-c59a1f33584455d524266c40e45384ecf83c85ae89eb76a781469c4a77d93af13
container_end_page 2180
container_issue 8
container_start_page 2167
container_title Neurochemical research
container_volume 46
creator Wang, Jingtao
Fu, Zhenqiang
Wang, Menghan
Lu, Jingjing
Yang, Hecheng
Lu, Hong
description Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and underlying mechanism of lncRNA X-inactive specific transcript (XIST) in cerebral ischemia/reperfusion (I/R) injury. An oxygen-glucose deprivation/reperfusion (OGD/R) model in PC12 cells was applied to mimic cerebral I/R injury in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) model was performed in mice to mimic cerebral I/R injury in vivo. Real-time PCR, fluorescence in situ hybridization (FISH) assay, and western blotting assay were carried out to detect the expression levels of XIST, miR-362, and Rho-related coiled-coil containing protein kinase 2 (ROCK2). The functional experiments were measured by CCK-8 assay, immumofluorescence assay, ELISA assay, TUNEL, and TTC staining. Results displayed that XIST was elevated in PC12 cells with OGD/R, as well as in the ischemic penumbra of mice with MCAO/R. In vitro, knockdown of XIST facilitated cell survival, inhibited apoptosis, and alleviated inflammation injury in OGDR PC12 cells. In vivo, inhibition of XIST remarkably reduced the neurological impairments, promoted neuron proliferation, and suppressed apoptosis in MCAO mice. Mechanistically, XIST acted as a competing endogenous RNA of miR-362 to regulate the downstream gene ROCK2. In conclusion, depletion of XIST attenuated I/R-induced neurological impairment and inflammatory response via the miR-362/ROCK2 axis. These findings offer a potential novel strategy for ischemic stroke therapy.
doi_str_mv 10.1007/s11064-021-03354-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2532260050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548026576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-c59a1f33584455d524266c40e45384ecf83c85ae89eb76a781469c4a77d93af13</originalsourceid><addsrcrecordid>eNp9kU9vEzEQxa0K1IbCF-ihssSFy5Lx3909RlGBqJUqhSBxsxxnNtl0d53aa5V-exxSQOLAyYf3e2888wi5YvCRAZTTyBhoWQBnBQihZKHPyISpUhS6BvGKTEBkWbAaLsibGPcA2cbZObkQEkSZmQnZ3w7ePWz800B9Q78vvq7obBxxSHbESOcYcB1sRxfR7bBv7XSJBwxNiq0f6GLYp_BMV7vg03ZHl7hNnR2PSo7q22UhNJ8u7-e3nM5-tPEted3YLuK7l_eSfPt0s5p_Ke7uPy_ms7vCScnGwqnasibvU0mp1EZxybV2ElAqUUl0TSVcpSxWNa5LbcuKSV07actyUwvbMHFJPpxyD8E_Joyj6dvosOvsgD5Fw5XgXAMoyOj7f9C9T2HIv8uUrIBrVepM8RPlgo8xYGMOoe1teDYMzLEJc2rC5OOaX02Yo-n6JTqte9z8sfw-fQbECYhZGrYY_s7-T-xPxduRFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548026576</pqid></control><display><type>article</type><title>Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis</title><source>Springer Nature</source><creator>Wang, Jingtao ; Fu, Zhenqiang ; Wang, Menghan ; Lu, Jingjing ; Yang, Hecheng ; Lu, Hong</creator><creatorcontrib>Wang, Jingtao ; Fu, Zhenqiang ; Wang, Menghan ; Lu, Jingjing ; Yang, Hecheng ; Lu, Hong</creatorcontrib><description>Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and underlying mechanism of lncRNA X-inactive specific transcript (XIST) in cerebral ischemia/reperfusion (I/R) injury. An oxygen-glucose deprivation/reperfusion (OGD/R) model in PC12 cells was applied to mimic cerebral I/R injury in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) model was performed in mice to mimic cerebral I/R injury in vivo. Real-time PCR, fluorescence in situ hybridization (FISH) assay, and western blotting assay were carried out to detect the expression levels of XIST, miR-362, and Rho-related coiled-coil containing protein kinase 2 (ROCK2). The functional experiments were measured by CCK-8 assay, immumofluorescence assay, ELISA assay, TUNEL, and TTC staining. Results displayed that XIST was elevated in PC12 cells with OGD/R, as well as in the ischemic penumbra of mice with MCAO/R. In vitro, knockdown of XIST facilitated cell survival, inhibited apoptosis, and alleviated inflammation injury in OGDR PC12 cells. In vivo, inhibition of XIST remarkably reduced the neurological impairments, promoted neuron proliferation, and suppressed apoptosis in MCAO mice. Mechanistically, XIST acted as a competing endogenous RNA of miR-362 to regulate the downstream gene ROCK2. In conclusion, depletion of XIST attenuated I/R-induced neurological impairment and inflammatory response via the miR-362/ROCK2 axis. These findings offer a potential novel strategy for ischemic stroke therapy.</description><identifier>ISSN: 0364-3190</identifier><identifier>EISSN: 1573-6903</identifier><identifier>DOI: 10.1007/s11064-021-03354-6</identifier><identifier>PMID: 34037903</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Apoptosis ; Assaying ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell Hypoxia - physiology ; Cell survival ; Cerebral blood flow ; Cholecystokinin ; Depletion ; Deprivation ; Enzyme-linked immunosorbent assay ; Fluorescence ; Fluorescence in situ hybridization ; Gene Knockdown Techniques ; Glucose ; Glucose - deficiency ; Infarction, Middle Cerebral Artery - metabolism ; Inflammation ; Inflammation - metabolism ; Inflammatory response ; Injuries ; Ischemia ; Kinases ; Male ; Mice ; Mice, Inbred C57BL ; MicroRNAs - metabolism ; Neurochemistry ; Neurological complications ; Neurology ; Neurosciences ; Non-coding RNA ; Occlusion ; Original Paper ; Oxygen ; Oxygen - metabolism ; Pathogenesis ; PC12 Cells ; Pheochromocytoma cells ; Protein kinase ; Rats ; Reperfusion ; Reperfusion Injury - metabolism ; rho-Associated Kinases - metabolism ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; Transcription ; Western blotting</subject><ispartof>Neurochemical research, 2021-08, Vol.46 (8), p.2167-2180</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-c59a1f33584455d524266c40e45384ecf83c85ae89eb76a781469c4a77d93af13</citedby><cites>FETCH-LOGICAL-c441t-c59a1f33584455d524266c40e45384ecf83c85ae89eb76a781469c4a77d93af13</cites><orcidid>0000-0001-8508-7616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34037903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jingtao</creatorcontrib><creatorcontrib>Fu, Zhenqiang</creatorcontrib><creatorcontrib>Wang, Menghan</creatorcontrib><creatorcontrib>Lu, Jingjing</creatorcontrib><creatorcontrib>Yang, Hecheng</creatorcontrib><creatorcontrib>Lu, Hong</creatorcontrib><title>Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis</title><title>Neurochemical research</title><addtitle>Neurochem Res</addtitle><addtitle>Neurochem Res</addtitle><description>Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and underlying mechanism of lncRNA X-inactive specific transcript (XIST) in cerebral ischemia/reperfusion (I/R) injury. An oxygen-glucose deprivation/reperfusion (OGD/R) model in PC12 cells was applied to mimic cerebral I/R injury in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) model was performed in mice to mimic cerebral I/R injury in vivo. Real-time PCR, fluorescence in situ hybridization (FISH) assay, and western blotting assay were carried out to detect the expression levels of XIST, miR-362, and Rho-related coiled-coil containing protein kinase 2 (ROCK2). The functional experiments were measured by CCK-8 assay, immumofluorescence assay, ELISA assay, TUNEL, and TTC staining. Results displayed that XIST was elevated in PC12 cells with OGD/R, as well as in the ischemic penumbra of mice with MCAO/R. In vitro, knockdown of XIST facilitated cell survival, inhibited apoptosis, and alleviated inflammation injury in OGDR PC12 cells. In vivo, inhibition of XIST remarkably reduced the neurological impairments, promoted neuron proliferation, and suppressed apoptosis in MCAO mice. Mechanistically, XIST acted as a competing endogenous RNA of miR-362 to regulate the downstream gene ROCK2. In conclusion, depletion of XIST attenuated I/R-induced neurological impairment and inflammatory response via the miR-362/ROCK2 axis. These findings offer a potential novel strategy for ischemic stroke therapy.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Assaying</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell Hypoxia - physiology</subject><subject>Cell survival</subject><subject>Cerebral blood flow</subject><subject>Cholecystokinin</subject><subject>Depletion</subject><subject>Deprivation</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Gene Knockdown Techniques</subject><subject>Glucose</subject><subject>Glucose - deficiency</subject><subject>Infarction, Middle Cerebral Artery - metabolism</subject><subject>Inflammation</subject><subject>Inflammation - metabolism</subject><subject>Inflammatory response</subject><subject>Injuries</subject><subject>Ischemia</subject><subject>Kinases</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>MicroRNAs - metabolism</subject><subject>Neurochemistry</subject><subject>Neurological complications</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Non-coding RNA</subject><subject>Occlusion</subject><subject>Original Paper</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Pathogenesis</subject><subject>PC12 Cells</subject><subject>Pheochromocytoma cells</subject><subject>Protein kinase</subject><subject>Rats</subject><subject>Reperfusion</subject><subject>Reperfusion Injury - metabolism</subject><subject>rho-Associated Kinases - metabolism</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>Transcription</subject><subject>Western blotting</subject><issn>0364-3190</issn><issn>1573-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vEzEQxa0K1IbCF-ihssSFy5Lx3909RlGBqJUqhSBxsxxnNtl0d53aa5V-exxSQOLAyYf3e2888wi5YvCRAZTTyBhoWQBnBQihZKHPyISpUhS6BvGKTEBkWbAaLsibGPcA2cbZObkQEkSZmQnZ3w7ePWz800B9Q78vvq7obBxxSHbESOcYcB1sRxfR7bBv7XSJBwxNiq0f6GLYp_BMV7vg03ZHl7hNnR2PSo7q22UhNJ8u7-e3nM5-tPEted3YLuK7l_eSfPt0s5p_Ke7uPy_ms7vCScnGwqnasibvU0mp1EZxybV2ElAqUUl0TSVcpSxWNa5LbcuKSV07actyUwvbMHFJPpxyD8E_Joyj6dvosOvsgD5Fw5XgXAMoyOj7f9C9T2HIv8uUrIBrVepM8RPlgo8xYGMOoe1teDYMzLEJc2rC5OOaX02Yo-n6JTqte9z8sfw-fQbECYhZGrYY_s7-T-xPxduRFA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Wang, Jingtao</creator><creator>Fu, Zhenqiang</creator><creator>Wang, Menghan</creator><creator>Lu, Jingjing</creator><creator>Yang, Hecheng</creator><creator>Lu, Hong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8508-7616</orcidid></search><sort><creationdate>20210801</creationdate><title>Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis</title><author>Wang, Jingtao ; Fu, Zhenqiang ; Wang, Menghan ; Lu, Jingjing ; Yang, Hecheng ; Lu, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-c59a1f33584455d524266c40e45384ecf83c85ae89eb76a781469c4a77d93af13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Assaying</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell Hypoxia - physiology</topic><topic>Cell survival</topic><topic>Cerebral blood flow</topic><topic>Cholecystokinin</topic><topic>Depletion</topic><topic>Deprivation</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Gene Knockdown Techniques</topic><topic>Glucose</topic><topic>Glucose - deficiency</topic><topic>Infarction, Middle Cerebral Artery - metabolism</topic><topic>Inflammation</topic><topic>Inflammation - metabolism</topic><topic>Inflammatory response</topic><topic>Injuries</topic><topic>Ischemia</topic><topic>Kinases</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>MicroRNAs - metabolism</topic><topic>Neurochemistry</topic><topic>Neurological complications</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Non-coding RNA</topic><topic>Occlusion</topic><topic>Original Paper</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Pathogenesis</topic><topic>PC12 Cells</topic><topic>Pheochromocytoma cells</topic><topic>Protein kinase</topic><topic>Rats</topic><topic>Reperfusion</topic><topic>Reperfusion Injury - metabolism</topic><topic>rho-Associated Kinases - metabolism</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>Transcription</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingtao</creatorcontrib><creatorcontrib>Fu, Zhenqiang</creatorcontrib><creatorcontrib>Wang, Menghan</creatorcontrib><creatorcontrib>Lu, Jingjing</creatorcontrib><creatorcontrib>Yang, Hecheng</creatorcontrib><creatorcontrib>Lu, Hong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Neurochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jingtao</au><au>Fu, Zhenqiang</au><au>Wang, Menghan</au><au>Lu, Jingjing</au><au>Yang, Hecheng</au><au>Lu, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis</atitle><jtitle>Neurochemical research</jtitle><stitle>Neurochem Res</stitle><addtitle>Neurochem Res</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>46</volume><issue>8</issue><spage>2167</spage><epage>2180</epage><pages>2167-2180</pages><issn>0364-3190</issn><eissn>1573-6903</eissn><abstract>Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and underlying mechanism of lncRNA X-inactive specific transcript (XIST) in cerebral ischemia/reperfusion (I/R) injury. An oxygen-glucose deprivation/reperfusion (OGD/R) model in PC12 cells was applied to mimic cerebral I/R injury in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) model was performed in mice to mimic cerebral I/R injury in vivo. Real-time PCR, fluorescence in situ hybridization (FISH) assay, and western blotting assay were carried out to detect the expression levels of XIST, miR-362, and Rho-related coiled-coil containing protein kinase 2 (ROCK2). The functional experiments were measured by CCK-8 assay, immumofluorescence assay, ELISA assay, TUNEL, and TTC staining. Results displayed that XIST was elevated in PC12 cells with OGD/R, as well as in the ischemic penumbra of mice with MCAO/R. In vitro, knockdown of XIST facilitated cell survival, inhibited apoptosis, and alleviated inflammation injury in OGDR PC12 cells. In vivo, inhibition of XIST remarkably reduced the neurological impairments, promoted neuron proliferation, and suppressed apoptosis in MCAO mice. Mechanistically, XIST acted as a competing endogenous RNA of miR-362 to regulate the downstream gene ROCK2. In conclusion, depletion of XIST attenuated I/R-induced neurological impairment and inflammatory response via the miR-362/ROCK2 axis. These findings offer a potential novel strategy for ischemic stroke therapy.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34037903</pmid><doi>10.1007/s11064-021-03354-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8508-7616</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0364-3190
ispartof Neurochemical research, 2021-08, Vol.46 (8), p.2167-2180
issn 0364-3190
1573-6903
language eng
recordid cdi_proquest_miscellaneous_2532260050
source Springer Nature
subjects Animals
Apoptosis
Assaying
Biochemistry
Biomedical and Life Sciences
Biomedicine
Cell Biology
Cell Hypoxia - physiology
Cell survival
Cerebral blood flow
Cholecystokinin
Depletion
Deprivation
Enzyme-linked immunosorbent assay
Fluorescence
Fluorescence in situ hybridization
Gene Knockdown Techniques
Glucose
Glucose - deficiency
Infarction, Middle Cerebral Artery - metabolism
Inflammation
Inflammation - metabolism
Inflammatory response
Injuries
Ischemia
Kinases
Male
Mice
Mice, Inbred C57BL
MicroRNAs - metabolism
Neurochemistry
Neurological complications
Neurology
Neurosciences
Non-coding RNA
Occlusion
Original Paper
Oxygen
Oxygen - metabolism
Pathogenesis
PC12 Cells
Pheochromocytoma cells
Protein kinase
Rats
Reperfusion
Reperfusion Injury - metabolism
rho-Associated Kinases - metabolism
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
Transcription
Western blotting
title Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knockdown%20of%20XIST%20Attenuates%20Cerebral%20Ischemia/Reperfusion%20Injury%20Through%20Regulation%20of%20miR-362/ROCK2%20Axis&rft.jtitle=Neurochemical%20research&rft.au=Wang,%20Jingtao&rft.date=2021-08-01&rft.volume=46&rft.issue=8&rft.spage=2167&rft.epage=2180&rft.pages=2167-2180&rft.issn=0364-3190&rft.eissn=1573-6903&rft_id=info:doi/10.1007/s11064-021-03354-6&rft_dat=%3Cproquest_cross%3E2548026576%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-c59a1f33584455d524266c40e45384ecf83c85ae89eb76a781469c4a77d93af13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548026576&rft_id=info:pmid/34037903&rfr_iscdi=true