Loading…
A comparison of natural language processing to ICD-10 codes for identification and characterization of pulmonary embolism
The 10th revision of the International Classification of Diseases (ICD-10) codes is frequently used to identify pulmonary embolism (PE) events, although the validity of ICD-10 has been questioned. Natural language processing (NLP) is a novel tool that may be useful for pulmonary embolism identificat...
Saved in:
Published in: | Thrombosis research 2021-07, Vol.203, p.190-195 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The 10th revision of the International Classification of Diseases (ICD-10) codes is frequently used to identify pulmonary embolism (PE) events, although the validity of ICD-10 has been questioned. Natural language processing (NLP) is a novel tool that may be useful for pulmonary embolism identification.
We performed a retrospective comparative accuracy study of 1000 randomly selected healthcare encounters with a CT pulmonary angiogram ordered between January 1, 2019 and January 1, 2020 at a single academic medical center. Two independent observers reviewed each radiology report and abstracted key findings related to PE presence/absence, chronicity, and anatomic location. NLP interpretations of radiology reports and ICD-10 codes were queried electronically and compared to the reference standard, manual chart review.
A total of 970 encounters were included for analysis. The prevalence of PE was 13% by manual review. For PE identification, sensitivity was similar between NLP (96.0%) and ICD-10 (92.9%; p = 0.405), and specificity was significantly higher with NLP (97.7%) compared to ICD-10 (91.0%; p |
---|---|
ISSN: | 0049-3848 1879-2472 |
DOI: | 10.1016/j.thromres.2021.04.020 |