Loading…

Investigation of millimeter-wave scattering from frequency selective surfaces

A comparative numerical and experimental analysis of scattering from dielectric-backed frequency-selective surfaces in W-band (75-110 GHz) was carried out. The examples studied include metal (aluminium), resistive (bismuth), and bismuth-loaded I-pole or linearized Jerusalem cross arrays on fused sil...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques 1991-02, Vol.39 (2), p.315-322
Main Authors: Schimert, T.R., Brouns, A.J., Chan, C.H., Mittra, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-20e62642662dbea5ec456667acfc1f740d98015998342616b3d83136409903783
cites cdi_FETCH-LOGICAL-c370t-20e62642662dbea5ec456667acfc1f740d98015998342616b3d83136409903783
container_end_page 322
container_issue 2
container_start_page 315
container_title IEEE transactions on microwave theory and techniques
container_volume 39
creator Schimert, T.R.
Brouns, A.J.
Chan, C.H.
Mittra, R.
description A comparative numerical and experimental analysis of scattering from dielectric-backed frequency-selective surfaces in W-band (75-110 GHz) was carried out. The examples studied include metal (aluminium), resistive (bismuth), and bismuth-loaded I-pole or linearized Jerusalem cross arrays on fused silica, all of which exhibit a band-stop resonance in W-band as a general feature. The arrays were fabricated using standard photolithographic techniques. The numerical analysis involves the solution of an electric field integral equation using subdomain rooftop basis and testing functions within the framework of the Galerkin testing procedure. The lossy nature of the materials was fully accounted for. A comparative analysis of doubly stacked aluminium I-pole arrays was also performed. The numerical analysis exploits a variant of the cascade method in that the immediately adjacent dielectric layers are included in the construction of the scattering matrix for the frequency selective surface. This allows the higher-order evanescent Floquet modes to decay sufficiently at the dielectric boundaries so they can be ignored in the scattering matrix.< >
doi_str_mv 10.1109/22.102976
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_25347935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>102976</ieee_id><sourcerecordid>28482415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-20e62642662dbea5ec456667acfc1f740d98015998342616b3d83136409903783</originalsourceid><addsrcrecordid>eNqN0T1LA0EQBuBFFIzRwtbqKsHi4uz3binBaCBio_Wx2cyFlfuIu5dI_r0Xz8LONDO8zMMwMIRcU5hQCvaesQkFZrU6ISMqpc6t0nBKRgDU5FYYOCcXKX30UUgwI_Iyb3aYurB2XWibrC2zOlRVqLHDmH-5HWbJu64PoVlnZWzrvuDnFhu_zxJW6LtwMNtYOo_pkpyVrkp49dvH5H32-DZ9zhevT_PpwyL3XEOXM0DFlGBKsdUSnUQvpFJKO196WmoBK2uASmsN7xFVS74ynHIlwFrg2vAxuR32bmLbH5O6og7JY1W5BtttKpgx1ACII6AwTFD5P5RcaMuPhYz28G6APrYpRSyLTQy1i_uCQnH4VcFYMfyqtzeDDYj4x_0MvwF4d40j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25347921</pqid></control><display><type>article</type><title>Investigation of millimeter-wave scattering from frequency selective surfaces</title><source>IEEE Xplore (Online service)</source><creator>Schimert, T.R. ; Brouns, A.J. ; Chan, C.H. ; Mittra, R.</creator><creatorcontrib>Schimert, T.R. ; Brouns, A.J. ; Chan, C.H. ; Mittra, R.</creatorcontrib><description>A comparative numerical and experimental analysis of scattering from dielectric-backed frequency-selective surfaces in W-band (75-110 GHz) was carried out. The examples studied include metal (aluminium), resistive (bismuth), and bismuth-loaded I-pole or linearized Jerusalem cross arrays on fused silica, all of which exhibit a band-stop resonance in W-band as a general feature. The arrays were fabricated using standard photolithographic techniques. The numerical analysis involves the solution of an electric field integral equation using subdomain rooftop basis and testing functions within the framework of the Galerkin testing procedure. The lossy nature of the materials was fully accounted for. A comparative analysis of doubly stacked aluminium I-pole arrays was also performed. The numerical analysis exploits a variant of the cascade method in that the immediately adjacent dielectric layers are included in the construction of the scattering matrix for the frequency selective surface. This allows the higher-order evanescent Floquet modes to decay sufficiently at the dielectric boundaries so they can be ignored in the scattering matrix.&lt; &gt;</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/22.102976</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aluminum ; Bismuth ; Dielectrics ; Frequency ; Millimeter wave technology ; Numerical analysis ; Resonance ; Scattering ; Silicon compounds ; Testing</subject><ispartof>IEEE transactions on microwave theory and techniques, 1991-02, Vol.39 (2), p.315-322</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-20e62642662dbea5ec456667acfc1f740d98015998342616b3d83136409903783</citedby><cites>FETCH-LOGICAL-c370t-20e62642662dbea5ec456667acfc1f740d98015998342616b3d83136409903783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/102976$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Schimert, T.R.</creatorcontrib><creatorcontrib>Brouns, A.J.</creatorcontrib><creatorcontrib>Chan, C.H.</creatorcontrib><creatorcontrib>Mittra, R.</creatorcontrib><title>Investigation of millimeter-wave scattering from frequency selective surfaces</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>A comparative numerical and experimental analysis of scattering from dielectric-backed frequency-selective surfaces in W-band (75-110 GHz) was carried out. The examples studied include metal (aluminium), resistive (bismuth), and bismuth-loaded I-pole or linearized Jerusalem cross arrays on fused silica, all of which exhibit a band-stop resonance in W-band as a general feature. The arrays were fabricated using standard photolithographic techniques. The numerical analysis involves the solution of an electric field integral equation using subdomain rooftop basis and testing functions within the framework of the Galerkin testing procedure. The lossy nature of the materials was fully accounted for. A comparative analysis of doubly stacked aluminium I-pole arrays was also performed. The numerical analysis exploits a variant of the cascade method in that the immediately adjacent dielectric layers are included in the construction of the scattering matrix for the frequency selective surface. This allows the higher-order evanescent Floquet modes to decay sufficiently at the dielectric boundaries so they can be ignored in the scattering matrix.&lt; &gt;</description><subject>Aluminum</subject><subject>Bismuth</subject><subject>Dielectrics</subject><subject>Frequency</subject><subject>Millimeter wave technology</subject><subject>Numerical analysis</subject><subject>Resonance</subject><subject>Scattering</subject><subject>Silicon compounds</subject><subject>Testing</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqN0T1LA0EQBuBFFIzRwtbqKsHi4uz3binBaCBio_Wx2cyFlfuIu5dI_r0Xz8LONDO8zMMwMIRcU5hQCvaesQkFZrU6ISMqpc6t0nBKRgDU5FYYOCcXKX30UUgwI_Iyb3aYurB2XWibrC2zOlRVqLHDmH-5HWbJu64PoVlnZWzrvuDnFhu_zxJW6LtwMNtYOo_pkpyVrkp49dvH5H32-DZ9zhevT_PpwyL3XEOXM0DFlGBKsdUSnUQvpFJKO196WmoBK2uASmsN7xFVS74ynHIlwFrg2vAxuR32bmLbH5O6og7JY1W5BtttKpgx1ACII6AwTFD5P5RcaMuPhYz28G6APrYpRSyLTQy1i_uCQnH4VcFYMfyqtzeDDYj4x_0MvwF4d40j</recordid><startdate>19910201</startdate><enddate>19910201</enddate><creator>Schimert, T.R.</creator><creator>Brouns, A.J.</creator><creator>Chan, C.H.</creator><creator>Mittra, R.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>19910201</creationdate><title>Investigation of millimeter-wave scattering from frequency selective surfaces</title><author>Schimert, T.R. ; Brouns, A.J. ; Chan, C.H. ; Mittra, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-20e62642662dbea5ec456667acfc1f740d98015998342616b3d83136409903783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Aluminum</topic><topic>Bismuth</topic><topic>Dielectrics</topic><topic>Frequency</topic><topic>Millimeter wave technology</topic><topic>Numerical analysis</topic><topic>Resonance</topic><topic>Scattering</topic><topic>Silicon compounds</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schimert, T.R.</creatorcontrib><creatorcontrib>Brouns, A.J.</creatorcontrib><creatorcontrib>Chan, C.H.</creatorcontrib><creatorcontrib>Mittra, R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schimert, T.R.</au><au>Brouns, A.J.</au><au>Chan, C.H.</au><au>Mittra, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of millimeter-wave scattering from frequency selective surfaces</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>1991-02-01</date><risdate>1991</risdate><volume>39</volume><issue>2</issue><spage>315</spage><epage>322</epage><pages>315-322</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>A comparative numerical and experimental analysis of scattering from dielectric-backed frequency-selective surfaces in W-band (75-110 GHz) was carried out. The examples studied include metal (aluminium), resistive (bismuth), and bismuth-loaded I-pole or linearized Jerusalem cross arrays on fused silica, all of which exhibit a band-stop resonance in W-band as a general feature. The arrays were fabricated using standard photolithographic techniques. The numerical analysis involves the solution of an electric field integral equation using subdomain rooftop basis and testing functions within the framework of the Galerkin testing procedure. The lossy nature of the materials was fully accounted for. A comparative analysis of doubly stacked aluminium I-pole arrays was also performed. The numerical analysis exploits a variant of the cascade method in that the immediately adjacent dielectric layers are included in the construction of the scattering matrix for the frequency selective surface. This allows the higher-order evanescent Floquet modes to decay sufficiently at the dielectric boundaries so they can be ignored in the scattering matrix.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/22.102976</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 1991-02, Vol.39 (2), p.315-322
issn 0018-9480
1557-9670
language eng
recordid cdi_proquest_miscellaneous_25347935
source IEEE Xplore (Online service)
subjects Aluminum
Bismuth
Dielectrics
Frequency
Millimeter wave technology
Numerical analysis
Resonance
Scattering
Silicon compounds
Testing
title Investigation of millimeter-wave scattering from frequency selective surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20millimeter-wave%20scattering%20from%20frequency%20selective%20surfaces&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Schimert,%20T.R.&rft.date=1991-02-01&rft.volume=39&rft.issue=2&rft.spage=315&rft.epage=322&rft.pages=315-322&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/22.102976&rft_dat=%3Cproquest_ieee_%3E28482415%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-20e62642662dbea5ec456667acfc1f740d98015998342616b3d83136409903783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25347921&rft_id=info:pmid/&rft_ieee_id=102976&rfr_iscdi=true