Loading…

40.1% Record Low‐Light Solar‐Cell Efficiency by Holistic Trap‐Passivation using Micrometer‐Thick Perovskite Film

Perovskite solar cells exhibit not only high efficiency under full AM1.5 sunlight, but also have great potential for applications in low‐light environments, such as indoors, cloudy conditions, early morning, late evening, etc. Unfortunately, their performance still suffers from severe trap‐induced n...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2021-07, Vol.33 (27), p.e2100770-n/a
Main Authors: He, Xilai, Chen, Jiangzhao, Ren, Xiaodong, Zhang, Lu, Liu, Yucheng, Feng, Jiangshan, Fang, Junjie, Zhao, Kui, Liu, Shengzhong (Frank)
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4160-f9289e2eb03ff23a2b713b481e51a01ab0772d81c4a231813c96fc16c77ac5e23
cites cdi_FETCH-LOGICAL-c4160-f9289e2eb03ff23a2b713b481e51a01ab0772d81c4a231813c96fc16c77ac5e23
container_end_page n/a
container_issue 27
container_start_page e2100770
container_title Advanced materials (Weinheim)
container_volume 33
creator He, Xilai
Chen, Jiangzhao
Ren, Xiaodong
Zhang, Lu
Liu, Yucheng
Feng, Jiangshan
Fang, Junjie
Zhao, Kui
Liu, Shengzhong (Frank)
description Perovskite solar cells exhibit not only high efficiency under full AM1.5 sunlight, but also have great potential for applications in low‐light environments, such as indoors, cloudy conditions, early morning, late evening, etc. Unfortunately, their performance still suffers from severe trap‐induced nonradiative recombination, particularly under low‐light conditions. Here, a holistic passivation strategy is developed to reduce traps both on the surface and in the bulk of micrometer‐thick perovskite film, leading to a record efficiency of 40.1% under 301.6 µW cm−2 warm light‐emitting diode (LED) light for low‐light solar‐cell applications. The involvement of guanidinium into the perovskite bulk film and 2‐(4‐methoxyphenyl)ethylamine hydrobromide (CH3O‐PEABr) passivation on the perovskite surface synergistically suppresses the trap states. The charge carrier lifetimes of the perovskite film increase by tenfold and fivefold to 981 ns and 8.02 µs at the crystal surface and in its bulk, respectively. The decreased nonradiative recombination loss translates to a high open‐circuit voltage (Voc) of 1.00 V, a high short‐circuit current (Jsc) of 152.10 µA cm−2, and a fill factor (FF) of 79.52%. Note that this performance also stands as the highest among all photovoltaics measured under indoor light illumination. This work of trap passivation for micrometer‐thick perovskite film paves a way for high‐performance, self‐powered IoT devices. The involvement of guanidinium in perovskite bulk film and CH3O‐PEABr passivation on the perovskite surface synergistically suppresses the trap states. The charge carrier lifetimes of perovskite films increase by tenfold and fivefold to 981 ns and 8.02 µs at the crystal surface and in its bulk, respectively. The decreased nonradiative recombination loss translates to a record efficiency of 40.1%.
doi_str_mv 10.1002/adma.202100770
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2535103894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535103894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4160-f9289e2eb03ff23a2b713b481e51a01ab0772d81c4a231813c96fc16c77ac5e23</originalsourceid><addsrcrecordid>eNqFkc1KAzEUhYMoWKtb1wER3Ey9SeYvy1JbK7RYtK6HTJqpsTOTmkxbu_MRfEafxJSKghtXlwvfOfceDkLnBDoEgF6LWSU6FKhfkgQOUItElAQh8OgQtYCzKOBxmB6jE-deAIDHELfQW-jVl_hBSWNneGQ2n-8fIz1_bvCjKYX1W0-VJe4XhZZa1XKL8y0emlK7Rks8tWLpkYlwTq9Fo02NV07XczzW0ppKNWrnMH3WcoEnypq1W-hG4YEuq1N0VIjSqbPv2UZPg_60NwxG97d3ve4okCGJISg4TbmiKgdWFJQJmieE5WFKVEQEEJH7rHSWEhkKykhKmORxIUksk0TISFHWRld736U1ryvlmqzSTvpMolZm5TIasYgAS3no0Ys_6ItZ2dp_56kw5TQCf6CNOnvKJ3TOqiJbWl0Ju80IZLsisl0R2U8RXsD3go0u1fYfOuvejLu_2i_lWI9r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548925081</pqid></control><display><type>article</type><title>40.1% Record Low‐Light Solar‐Cell Efficiency by Holistic Trap‐Passivation using Micrometer‐Thick Perovskite Film</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>He, Xilai ; Chen, Jiangzhao ; Ren, Xiaodong ; Zhang, Lu ; Liu, Yucheng ; Feng, Jiangshan ; Fang, Junjie ; Zhao, Kui ; Liu, Shengzhong (Frank)</creator><creatorcontrib>He, Xilai ; Chen, Jiangzhao ; Ren, Xiaodong ; Zhang, Lu ; Liu, Yucheng ; Feng, Jiangshan ; Fang, Junjie ; Zhao, Kui ; Liu, Shengzhong (Frank)</creatorcontrib><description>Perovskite solar cells exhibit not only high efficiency under full AM1.5 sunlight, but also have great potential for applications in low‐light environments, such as indoors, cloudy conditions, early morning, late evening, etc. Unfortunately, their performance still suffers from severe trap‐induced nonradiative recombination, particularly under low‐light conditions. Here, a holistic passivation strategy is developed to reduce traps both on the surface and in the bulk of micrometer‐thick perovskite film, leading to a record efficiency of 40.1% under 301.6 µW cm−2 warm light‐emitting diode (LED) light for low‐light solar‐cell applications. The involvement of guanidinium into the perovskite bulk film and 2‐(4‐methoxyphenyl)ethylamine hydrobromide (CH3O‐PEABr) passivation on the perovskite surface synergistically suppresses the trap states. The charge carrier lifetimes of the perovskite film increase by tenfold and fivefold to 981 ns and 8.02 µs at the crystal surface and in its bulk, respectively. The decreased nonradiative recombination loss translates to a high open‐circuit voltage (Voc) of 1.00 V, a high short‐circuit current (Jsc) of 152.10 µA cm−2, and a fill factor (FF) of 79.52%. Note that this performance also stands as the highest among all photovoltaics measured under indoor light illumination. This work of trap passivation for micrometer‐thick perovskite film paves a way for high‐performance, self‐powered IoT devices. The involvement of guanidinium in perovskite bulk film and CH3O‐PEABr passivation on the perovskite surface synergistically suppresses the trap states. The charge carrier lifetimes of perovskite films increase by tenfold and fivefold to 981 ns and 8.02 µs at the crystal surface and in its bulk, respectively. The decreased nonradiative recombination loss translates to a record efficiency of 40.1%.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202100770</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Circuits ; Crystal surfaces ; Current carriers ; Efficiency ; holistic passivation strategy ; Light ; Light emitting diodes ; low‐light photovoltaic cells ; low‐power‐consumption electronic devices ; Materials science ; micrometer‐thick perovskite films ; Passivity ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Solar cells</subject><ispartof>Advanced materials (Weinheim), 2021-07, Vol.33 (27), p.e2100770-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4160-f9289e2eb03ff23a2b713b481e51a01ab0772d81c4a231813c96fc16c77ac5e23</citedby><cites>FETCH-LOGICAL-c4160-f9289e2eb03ff23a2b713b481e51a01ab0772d81c4a231813c96fc16c77ac5e23</cites><orcidid>0000-0002-6338-852X ; 0000-0002-9512-0405 ; 0000-0003-1172-6942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>He, Xilai</creatorcontrib><creatorcontrib>Chen, Jiangzhao</creatorcontrib><creatorcontrib>Ren, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Liu, Yucheng</creatorcontrib><creatorcontrib>Feng, Jiangshan</creatorcontrib><creatorcontrib>Fang, Junjie</creatorcontrib><creatorcontrib>Zhao, Kui</creatorcontrib><creatorcontrib>Liu, Shengzhong (Frank)</creatorcontrib><title>40.1% Record Low‐Light Solar‐Cell Efficiency by Holistic Trap‐Passivation using Micrometer‐Thick Perovskite Film</title><title>Advanced materials (Weinheim)</title><description>Perovskite solar cells exhibit not only high efficiency under full AM1.5 sunlight, but also have great potential for applications in low‐light environments, such as indoors, cloudy conditions, early morning, late evening, etc. Unfortunately, their performance still suffers from severe trap‐induced nonradiative recombination, particularly under low‐light conditions. Here, a holistic passivation strategy is developed to reduce traps both on the surface and in the bulk of micrometer‐thick perovskite film, leading to a record efficiency of 40.1% under 301.6 µW cm−2 warm light‐emitting diode (LED) light for low‐light solar‐cell applications. The involvement of guanidinium into the perovskite bulk film and 2‐(4‐methoxyphenyl)ethylamine hydrobromide (CH3O‐PEABr) passivation on the perovskite surface synergistically suppresses the trap states. The charge carrier lifetimes of the perovskite film increase by tenfold and fivefold to 981 ns and 8.02 µs at the crystal surface and in its bulk, respectively. The decreased nonradiative recombination loss translates to a high open‐circuit voltage (Voc) of 1.00 V, a high short‐circuit current (Jsc) of 152.10 µA cm−2, and a fill factor (FF) of 79.52%. Note that this performance also stands as the highest among all photovoltaics measured under indoor light illumination. This work of trap passivation for micrometer‐thick perovskite film paves a way for high‐performance, self‐powered IoT devices. The involvement of guanidinium in perovskite bulk film and CH3O‐PEABr passivation on the perovskite surface synergistically suppresses the trap states. The charge carrier lifetimes of perovskite films increase by tenfold and fivefold to 981 ns and 8.02 µs at the crystal surface and in its bulk, respectively. The decreased nonradiative recombination loss translates to a record efficiency of 40.1%.</description><subject>Circuits</subject><subject>Crystal surfaces</subject><subject>Current carriers</subject><subject>Efficiency</subject><subject>holistic passivation strategy</subject><subject>Light</subject><subject>Light emitting diodes</subject><subject>low‐light photovoltaic cells</subject><subject>low‐power‐consumption electronic devices</subject><subject>Materials science</subject><subject>micrometer‐thick perovskite films</subject><subject>Passivity</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc1KAzEUhYMoWKtb1wER3Ey9SeYvy1JbK7RYtK6HTJqpsTOTmkxbu_MRfEafxJSKghtXlwvfOfceDkLnBDoEgF6LWSU6FKhfkgQOUItElAQh8OgQtYCzKOBxmB6jE-deAIDHELfQW-jVl_hBSWNneGQ2n-8fIz1_bvCjKYX1W0-VJe4XhZZa1XKL8y0emlK7Rks8tWLpkYlwTq9Fo02NV07XczzW0ppKNWrnMH3WcoEnypq1W-hG4YEuq1N0VIjSqbPv2UZPg_60NwxG97d3ve4okCGJISg4TbmiKgdWFJQJmieE5WFKVEQEEJH7rHSWEhkKykhKmORxIUksk0TISFHWRld736U1ryvlmqzSTvpMolZm5TIasYgAS3no0Ys_6ItZ2dp_56kw5TQCf6CNOnvKJ3TOqiJbWl0Ju80IZLsisl0R2U8RXsD3go0u1fYfOuvejLu_2i_lWI9r</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>He, Xilai</creator><creator>Chen, Jiangzhao</creator><creator>Ren, Xiaodong</creator><creator>Zhang, Lu</creator><creator>Liu, Yucheng</creator><creator>Feng, Jiangshan</creator><creator>Fang, Junjie</creator><creator>Zhao, Kui</creator><creator>Liu, Shengzhong (Frank)</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6338-852X</orcidid><orcidid>https://orcid.org/0000-0002-9512-0405</orcidid><orcidid>https://orcid.org/0000-0003-1172-6942</orcidid></search><sort><creationdate>20210701</creationdate><title>40.1% Record Low‐Light Solar‐Cell Efficiency by Holistic Trap‐Passivation using Micrometer‐Thick Perovskite Film</title><author>He, Xilai ; Chen, Jiangzhao ; Ren, Xiaodong ; Zhang, Lu ; Liu, Yucheng ; Feng, Jiangshan ; Fang, Junjie ; Zhao, Kui ; Liu, Shengzhong (Frank)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4160-f9289e2eb03ff23a2b713b481e51a01ab0772d81c4a231813c96fc16c77ac5e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circuits</topic><topic>Crystal surfaces</topic><topic>Current carriers</topic><topic>Efficiency</topic><topic>holistic passivation strategy</topic><topic>Light</topic><topic>Light emitting diodes</topic><topic>low‐light photovoltaic cells</topic><topic>low‐power‐consumption electronic devices</topic><topic>Materials science</topic><topic>micrometer‐thick perovskite films</topic><topic>Passivity</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xilai</creatorcontrib><creatorcontrib>Chen, Jiangzhao</creatorcontrib><creatorcontrib>Ren, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Liu, Yucheng</creatorcontrib><creatorcontrib>Feng, Jiangshan</creatorcontrib><creatorcontrib>Fang, Junjie</creatorcontrib><creatorcontrib>Zhao, Kui</creatorcontrib><creatorcontrib>Liu, Shengzhong (Frank)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xilai</au><au>Chen, Jiangzhao</au><au>Ren, Xiaodong</au><au>Zhang, Lu</au><au>Liu, Yucheng</au><au>Feng, Jiangshan</au><au>Fang, Junjie</au><au>Zhao, Kui</au><au>Liu, Shengzhong (Frank)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>40.1% Record Low‐Light Solar‐Cell Efficiency by Holistic Trap‐Passivation using Micrometer‐Thick Perovskite Film</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>33</volume><issue>27</issue><spage>e2100770</spage><epage>n/a</epage><pages>e2100770-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Perovskite solar cells exhibit not only high efficiency under full AM1.5 sunlight, but also have great potential for applications in low‐light environments, such as indoors, cloudy conditions, early morning, late evening, etc. Unfortunately, their performance still suffers from severe trap‐induced nonradiative recombination, particularly under low‐light conditions. Here, a holistic passivation strategy is developed to reduce traps both on the surface and in the bulk of micrometer‐thick perovskite film, leading to a record efficiency of 40.1% under 301.6 µW cm−2 warm light‐emitting diode (LED) light for low‐light solar‐cell applications. The involvement of guanidinium into the perovskite bulk film and 2‐(4‐methoxyphenyl)ethylamine hydrobromide (CH3O‐PEABr) passivation on the perovskite surface synergistically suppresses the trap states. The charge carrier lifetimes of the perovskite film increase by tenfold and fivefold to 981 ns and 8.02 µs at the crystal surface and in its bulk, respectively. The decreased nonradiative recombination loss translates to a high open‐circuit voltage (Voc) of 1.00 V, a high short‐circuit current (Jsc) of 152.10 µA cm−2, and a fill factor (FF) of 79.52%. Note that this performance also stands as the highest among all photovoltaics measured under indoor light illumination. This work of trap passivation for micrometer‐thick perovskite film paves a way for high‐performance, self‐powered IoT devices. The involvement of guanidinium in perovskite bulk film and CH3O‐PEABr passivation on the perovskite surface synergistically suppresses the trap states. The charge carrier lifetimes of perovskite films increase by tenfold and fivefold to 981 ns and 8.02 µs at the crystal surface and in its bulk, respectively. The decreased nonradiative recombination loss translates to a record efficiency of 40.1%.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202100770</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6338-852X</orcidid><orcidid>https://orcid.org/0000-0002-9512-0405</orcidid><orcidid>https://orcid.org/0000-0003-1172-6942</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-07, Vol.33 (27), p.e2100770-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2535103894
source Wiley-Blackwell Read & Publish Collection
subjects Circuits
Crystal surfaces
Current carriers
Efficiency
holistic passivation strategy
Light
Light emitting diodes
low‐light photovoltaic cells
low‐power‐consumption electronic devices
Materials science
micrometer‐thick perovskite films
Passivity
perovskite solar cells
Perovskites
Photovoltaic cells
Solar cells
title 40.1% Record Low‐Light Solar‐Cell Efficiency by Holistic Trap‐Passivation using Micrometer‐Thick Perovskite Film
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A57%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=40.1%25%20Record%20Low%E2%80%90Light%20Solar%E2%80%90Cell%20Efficiency%20by%20Holistic%20Trap%E2%80%90Passivation%20using%20Micrometer%E2%80%90Thick%20Perovskite%20Film&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=He,%20Xilai&rft.date=2021-07-01&rft.volume=33&rft.issue=27&rft.spage=e2100770&rft.epage=n/a&rft.pages=e2100770-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202100770&rft_dat=%3Cproquest_cross%3E2535103894%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4160-f9289e2eb03ff23a2b713b481e51a01ab0772d81c4a231813c96fc16c77ac5e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548925081&rft_id=info:pmid/&rfr_iscdi=true