Loading…
Terpenoid and lipid profiles vary in different Phytophthora cactorum – strawberry interactions
Specialized metabolites are essential components in plant defence systems, serving as signalling molecules and chemical weapons against pathogens. The manipulation of plant defence metabolome or metabolites can thus be an important virulence strategy for pathogens. Because of their central role, met...
Saved in:
Published in: | Phytochemistry (Oxford) 2021-09, Vol.189, p.112820-112820, Article 112820 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Specialized metabolites are essential components in plant defence systems, serving as signalling molecules and chemical weapons against pathogens. The manipulation of plant defence metabolome or metabolites can thus be an important virulence strategy for pathogens. Because of their central role, metabolites can give valuable insights into plant-pathogen interactions. Here, we have conducted nontargeted metabolite profiling with UPLC-ESI-qTOF-MS to investigate the metabolic changes that have taken place in the crown tissue of Fragaria vesca L. (woodland strawberry) and Fragaria × ananassa (Weston) Duchesne ex Rozier (garden strawberry) during 48 h after Phytophthora cactorum challenge. Two P. cactorum isolates were compared: Pc407 is highly virulent to F. × ananassa and causes crown rot, whereas Pc440 is mildly virulent. In total, 45 metabolites differentially accumulated between the treatment groups were tentatively identified. Triterpenoids and various lipid compounds were highly represented. The levels of several triterpenoids increased upon inoculation, some of them showing distinct accumulation patterns in different interactions. Triterpenoids could either inhibit or stimulate P. cactorum growth and, therefore, triterpenoid profiles might have significant impact on disease progression. Of the lipid compounds, lysophospholipids, linoleic acid and linolenic acid were highly accumulated in the most compatible Pc407 - F. × ananassa interaction. As lysophospholipids promote cell death and have been linked to susceptibility, these compounds might be involved in the pathogenesis of crown rot disease. This metabolite analysis revealed potential factors contributing to the outcome of P. cactorum – strawberry interactions. The information is highly valuable, as it can help to find new breeding strategies and new solutions to control P. cactorum in strawberry.
[Display omitted]
•Phytophthora cactorum induce changes in the metabolite profiles of strawberries.•The levels of triterpenoids increase in the crowns of strawberries upon inoculation.•Lysophospholipids and fatty acids highly accumulate in the compatible interaction. |
---|---|
ISSN: | 0031-9422 1873-3700 |
DOI: | 10.1016/j.phytochem.2021.112820 |