Loading…
Development of a rGO-BiVO4 Heterojunction Humidity Sensor with Boosted Performance
Humidity sensors with good repeatability, low hysteresis, and low-power consumption are increasingly important for environmental monitoring and industrial control applications. Herein, an impedance-type humidity sensor under low working voltage (5 mV) utilizing a rGO-BiVO4 nanocomposite is demonstra...
Saved in:
Published in: | ACS applied materials & interfaces 2021-06, Vol.13 (23), p.27188-27199 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Humidity sensors with good repeatability, low hysteresis, and low-power consumption are increasingly important for environmental monitoring and industrial control applications. Herein, an impedance-type humidity sensor under low working voltage (5 mV) utilizing a rGO-BiVO4 nanocomposite is demonstrated. The rGO-BiVO4 humidity sensor exhibits superior sensing performances, including good repeatability, negligible hysteresis (0.47%), fast response and recovery time, low power consumption, good stability, and anti-interference ability. The ultraviolet–visible absorption spectrum reveals that the narrow band gap of the rGO-BiVO4 nanocomposite is conductive to the electron transfer. The complex impedance spectra and the energy band structure analysis further suggest that the boosted humidity performance results from the formation of a heterojunction and the decrease of the heterojunction barrier height. The facile fabrication route, enhanced sensing performance, and excellent device reliability make the rGO-BiVO4 sensor highly attractive for high-end humidity sensing applications. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c05753 |