Loading…
Classical Gravitational Bremsstrahlung from a Worldline Quantum Field Theory
Using the recently established formalism of a worldline quantum field theory description of the classical scattering of two spinless black holes, we compute the far-field time-domain waveform of the gravitational waves produced in the encounter at leading order in the post-Minkowskian (weak field bu...
Saved in:
Published in: | Physical review letters 2021-05, Vol.126 (20), p.1-201103, Article 201103 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using the recently established formalism of a worldline quantum field theory description of the classical scattering of two spinless black holes, we compute the far-field time-domain waveform of the gravitational waves produced in the encounter at leading order in the post-Minkowskian (weak field but generic velocity) expansion. We reproduce the previous results of Kovacs and Thorne in a highly economic way. Then, using the waveform, we extract the leading-order total radiated angular momentum and energy (including differential results). Our work may enable crucial improvements of gravitational-wave predictions in the regime of large relative velocities. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.126.201103 |