Loading…
Production of an electro-biological particle electrode (EBPE) from lithium slag and its removal performance to salicylic acid in a three-dimensional electrocatalytic biological coupling reactor (3D-EBCR)
Electro-biological particle electrode (EBPE) prepared by lithium slag was used to remove salicylic acid in a three-dimensional electrocatalytic biological coupling reactor (3D-EBCR). The physical and chemical properties of the EBPE, the removal performance of salicylic acid and the degradation mecha...
Saved in:
Published in: | Chemosphere (Oxford) 2021-11, Vol.282, p.131020-131020, Article 131020 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electro-biological particle electrode (EBPE) prepared by lithium slag was used to remove salicylic acid in a three-dimensional electrocatalytic biological coupling reactor (3D-EBCR). The physical and chemical properties of the EBPE, the removal performance of salicylic acid and the degradation mechanism were studied. Results revealed as follows: (1) the EBPE prepared by lithium slag contained effective catalytic components including Fe2O3, SnO2, ZnO, MnO, Rb2O and TiO2, with stable structure and good adsorption performance; (2) the 3D-EBCR with EBPE had strong adaptability to the current intensity in the range of 0.25–0.40 A, and the removal rates of COD and salicylic acid were maintained above 87.1% and 85.2% respectively; (3) salicylic acid was removed through the synergistic action of adsorption, electrochemical oxidation and biological action.
[Display omitted]
•Electrobiological particle electrodes were prepared from waste lithium slag.•The 3D-EBCR with EBPE showed excellent removals for domestic wastewater.•Possible mechanism due to adsorption, electrochemical oxidation and biodegradation.•The application provided a promising way in lithium slag utilization and the treatment of domestic wastewater. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2021.131020 |