Loading…
Ultrasensitive near-infrared electrochemiluminescence biosensor derived from Eu-MOF with antenna effect and high efficiency catalysis of specific CoS2 hollow triple shelled nanoboxes for procalcitonin
In this paper, we report a novel multiple amplification strategy for ultrasensitive near-infrared electrochemiluminescence (ECL) immunoassay in K2S2O8 solution. The realization of this strategy is based on the antenna effect of Eu-MOF (EuBTC) and a high efficiency catalysis of CoS2 hollow triple she...
Saved in:
Published in: | Biosensors & bioelectronics 2021-11, Vol.191, p.113409-113409, Article 113409 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we report a novel multiple amplification strategy for ultrasensitive near-infrared electrochemiluminescence (ECL) immunoassay in K2S2O8 solution. The realization of this strategy is based on the antenna effect of Eu-MOF (EuBTC) and a high efficiency catalysis of CoS2 hollow triple shelled nanoboxes (TSNBs). The H3BTC ligand in the antenna effect first undergoes π-π* absorption and a singlet-singlet electronic transition. Its energy passes through the intersystem to the triplet state, next transfers from the lowest excited triplet state to the vibrational energy level of the rare earth ion, finally realizing sensitizing center ion luminescence. Moreover, ionic reaction and structural advantages endow CoS2 TSNBs a dual signal enhancement effect. This sandwich-type ECL biosensor has a near-infrared luminescence in 800–900 nm, thus avoiding damage to the sample in the meantime. In practical diagnosis, the normal critical value of procalcitonin (PCT) ( |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2021.113409 |