Loading…
A single residue deletion in the barley HKT1;5 P189 variant restores plasma membrane localisation but not Na+ conductance
Leaf Na+ exclusion, mediated by plasma membrane-localised Class 1 High-affinity potassium (K+) Transporters (HKTs), is a key mechanism contributing to salinity tolerance of several major crop plants. We determined previously that the leucine to proline residue substitution at position 189 (L189P) in...
Saved in:
Published in: | Biochimica et biophysica acta. Biomembranes 2021-10, Vol.1863 (10), p.183669-183669, Article 183669 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Leaf Na+ exclusion, mediated by plasma membrane-localised Class 1 High-affinity potassium (K+) Transporters (HKTs), is a key mechanism contributing to salinity tolerance of several major crop plants. We determined previously that the leucine to proline residue substitution at position 189 (L189P) in barley HvHKT1;5 disrupts its characteristic plasma membrane localisation and Na+ conductance. Here, we focus on a surprising observation that a single residue deletion of methionine at position 372 (M372del) within the conserved VMMYL motif in plant HKTs, restores plasma membrane localisation but not Na+ conductance in HvHKT1;5 P189. To clarify why the singular M372 deletion regains plasma membrane localisation, we built 3D models and defined α-helical assembly pathways of the P189 M372del mutant, and compared these findings to the wild-type protein, and the HvHKT1;5 L189 variant and its M372del mutant. We find that α-helical association and assembly pathways in HvHKT1;5 proteins fall in two contrasting categories. Inspections of structural flexibility through molecular dynamics simulations revealed that the conformational states of HvHKT1;5 P189 diverge from those of the L189 variant and M372del mutants. We propose that M372del in HvHKT1;5 P189 instigates structural rearrangements allowing routing to the plasma membrane, while the restoration of conductance would require further interventions. We integrate the microscopy, electrophysiology, and biocomputational data and discuss how a profound structural change in HvHKT1;5 P189 M372del impacts its α-helical protein association pathway and flexibility, and how these features underlie a delicate balance leading to restoring plasma membrane localisation but not Na+ conductance.
[Display omitted]
•HvHKT1;5 transporters contribute to salinity tolerance of major cereal crops.•M372 deletion in HvHKT1;5 P189 restores plasma membrane localisation but not conductance.•3D models and α-helical assembly pathways of HKT mutants rationalise protein folding.•M372 deletion causes changes in flexibility of α-helices and loops in HvHKT1;5 mutants. |
---|---|
ISSN: | 0005-2736 1879-2642 |
DOI: | 10.1016/j.bbamem.2021.183669 |