Loading…
A Dual Functional Self-Enhanced Electrochemiluminescent Nanohybrid for Label-Free MicroRNA Detection
The development of electrochemiluminescent (ECL) emitters with both intense ECL and excellent film-forming properties is highly desirable for biosensing applications. Herein, a facile one-pot preparation strategy was proposed for the synthesis of a self-enhanced ECL emitter by co-doping Ru(bpy)3 2+...
Saved in:
Published in: | Analytical chemistry (Washington) 2021-06, Vol.93 (25), p.8971-8977 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of electrochemiluminescent (ECL) emitters with both intense ECL and excellent film-forming properties is highly desirable for biosensing applications. Herein, a facile one-pot preparation strategy was proposed for the synthesis of a self-enhanced ECL emitter by co-doping Ru(bpy)3 2+ and (diethylaminomethyl)triethoxysilane (DEAMTES) into an in situ-produced silica nanohybrid (DEAMTES@RuSiO2). DEAMTES@RuSiO2 not only possessed improved ECL properties but also exhibited outstanding film-forming ability, which are both critical for the construction of ECL biosensors. By coupling branched catalytic hairpin assembly with efficient signal amplification peculiarity, a label-free ECL biosensor was further constructed for the convenient and highly sensitive detection of miRNA-21. The as-fabricated ECL biosensor displayed a detection limit of 8.19 fM, much lower than those in previous reports for miRNA-21 and showed superior reliability for detecting miRNA-21-spiked human serum sample, demonstrating its potential for applications in miRNA-associated fundamental research and clinical diagnosis. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.1c01570 |