Loading…

Cell-type deconvolution analysis identifies cancer-associated myofibroblast component as a poor prognostic factor in multiple cancer types

Cancer-associated fibroblasts (CAFs) constitute a prominent component of the tumor microenvironment and play critical roles in cancer progression and drug resistance. Although recent studies indicate CAFs may consist of several CAF subtypes, the breadth of CAF heterogeneity and functional roles of C...

Full description

Saved in:
Bibliographic Details
Published in:Oncogene 2021-07, Vol.40 (28), p.4686-4694
Main Authors: Li, Bingrui, Pei, Guangsheng, Yao, Jun, Ding, Qingqing, Jia, Peilin, Zhao, Zhongming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-d33b38a4f697e87a84ecd65c3c4e6db46a8d557d1c4d771a154e20e98ac738293
cites cdi_FETCH-LOGICAL-c442t-d33b38a4f697e87a84ecd65c3c4e6db46a8d557d1c4d771a154e20e98ac738293
container_end_page 4694
container_issue 28
container_start_page 4686
container_title Oncogene
container_volume 40
creator Li, Bingrui
Pei, Guangsheng
Yao, Jun
Ding, Qingqing
Jia, Peilin
Zhao, Zhongming
description Cancer-associated fibroblasts (CAFs) constitute a prominent component of the tumor microenvironment and play critical roles in cancer progression and drug resistance. Although recent studies indicate CAFs may consist of several CAF subtypes, the breadth of CAF heterogeneity and functional roles of CAF subtypes in cancer progression remain unclear. In this study, we implemented a cell-type deconvolutional approach to comprehensively characterize cell-type alternations across 18 cancer types from The Cancer Genome Atlas (TCGA). Pan-cancer survival analysis using deconvoluted CAF subtypes revealed myofibroblastic CAF (myCAF) composition as a poor prognostic factor in nine cancer types. Patients with higher myCAF compositions tend to have worse response to six antineoplastic drugs predicted by a lncRNA-based Elastic Net prediction model (LENP). In addition, integrative mutational analysis identified 14 and 413 genes associated with the differentiation degree of myCAF and inflammatory CAF (iCAF), respectively, with significant enrichment of genes involved in fibroblast and extracellular matrix (ECM)-related pathways. In summary, our findings systematically illustrated the complex roles of CAF subtypes in patient prognosis and drug response, and identified putative driver genes in CAF-subtype differentiation. These results provided novel therapeutic perspectives for targeting CAF subtypes in tumor microenvironment and arranging treatment scheme based on the CAF compositions in different cancer types.
doi_str_mv 10.1038/s41388-021-01870-x
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2543454832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A668622341</galeid><sourcerecordid>A668622341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-d33b38a4f697e87a84ecd65c3c4e6db46a8d557d1c4d771a154e20e98ac738293</originalsourceid><addsrcrecordid>eNp9ks2KFDEUhQtRnHb0BVxIwI2bjPmtpJZD4x8MuNF1SCe3mgxVSZmkZPoV5qlN262DIpJF4OY7Nzcnp-teUnJFCddvi6Bca0wYxYRqRfDdo25DheqxlIN43G3IIAkeGGcX3bNSbgkhaiDsaXfBBRWkF2TT3W9hmnA9LIA8uBS_p2mtIUVko50OJRQUPMQaxgAFORsdZGxLSS7YCh7NhzSGXU67yZaKXJqXFBuObEEWLSlltOS0j6nU4NBoXW2VENG8TjUsE5w7ouP95Xn3ZLRTgRfn_bL7-v7dl-1HfPP5w6ft9Q12QrCKPec7rq0Y-0GBVlYLcL6XjjsBvd-J3movpfLUCa8UtVQKYAQGbZ3img38sntz6ttG-7ZCqWYOxTUbbIS0FsOk4EIKzVlDX_-F3qY1N2eOlKRqaAbLB2pvJzAhjqlm645NzXXf656x5nejrv5BteVhDs15GEOr_yFgJ4HLqZQMo1lymG0-GErMMQDmFADTAmB-BsDcNdGr88Trbgb_W_LrxxvAT0BpR3EP-eFJ_2n7A91ZvZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551799505</pqid></control><display><type>article</type><title>Cell-type deconvolution analysis identifies cancer-associated myofibroblast component as a poor prognostic factor in multiple cancer types</title><source>Nexis UK</source><source>Springer Nature</source><creator>Li, Bingrui ; Pei, Guangsheng ; Yao, Jun ; Ding, Qingqing ; Jia, Peilin ; Zhao, Zhongming</creator><creatorcontrib>Li, Bingrui ; Pei, Guangsheng ; Yao, Jun ; Ding, Qingqing ; Jia, Peilin ; Zhao, Zhongming</creatorcontrib><description>Cancer-associated fibroblasts (CAFs) constitute a prominent component of the tumor microenvironment and play critical roles in cancer progression and drug resistance. Although recent studies indicate CAFs may consist of several CAF subtypes, the breadth of CAF heterogeneity and functional roles of CAF subtypes in cancer progression remain unclear. In this study, we implemented a cell-type deconvolutional approach to comprehensively characterize cell-type alternations across 18 cancer types from The Cancer Genome Atlas (TCGA). Pan-cancer survival analysis using deconvoluted CAF subtypes revealed myofibroblastic CAF (myCAF) composition as a poor prognostic factor in nine cancer types. Patients with higher myCAF compositions tend to have worse response to six antineoplastic drugs predicted by a lncRNA-based Elastic Net prediction model (LENP). In addition, integrative mutational analysis identified 14 and 413 genes associated with the differentiation degree of myCAF and inflammatory CAF (iCAF), respectively, with significant enrichment of genes involved in fibroblast and extracellular matrix (ECM)-related pathways. In summary, our findings systematically illustrated the complex roles of CAF subtypes in patient prognosis and drug response, and identified putative driver genes in CAF-subtype differentiation. These results provided novel therapeutic perspectives for targeting CAF subtypes in tumor microenvironment and arranging treatment scheme based on the CAF compositions in different cancer types.</description><identifier>ISSN: 0950-9232</identifier><identifier>ISSN: 1476-5594</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-021-01870-x</identifier><identifier>PMID: 34140640</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/47 ; 38/39 ; 45/41 ; 45/61 ; 631/61/212/2019 ; 631/67/327 ; 631/67/69 ; Antineoplastic drugs ; Apoptosis ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Cancer ; Cancer-Associated Fibroblasts - metabolism ; Cancer-Associated Fibroblasts - pathology ; Cell Biology ; Drug resistance ; Extracellular matrix ; Fibroblasts ; Gene Expression Regulation, Neoplastic ; Genetic aspects ; Genomes ; Human Genetics ; Humans ; Identification and classification ; Inflammation ; Internal Medicine ; Medical prognosis ; Medicine ; Medicine &amp; Public Health ; Myofibroblasts - metabolism ; Myofibroblasts - pathology ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - pathology ; Oncology ; Patients ; Prediction models ; Prognosis ; Survival analysis ; Tumor microenvironment ; Tumor Microenvironment - genetics</subject><ispartof>Oncogene, 2021-07, Vol.40 (28), p.4686-4694</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-d33b38a4f697e87a84ecd65c3c4e6db46a8d557d1c4d771a154e20e98ac738293</citedby><cites>FETCH-LOGICAL-c442t-d33b38a4f697e87a84ecd65c3c4e6db46a8d557d1c4d771a154e20e98ac738293</cites><orcidid>0000-0002-3477-0914 ; 0000-0003-4523-4153 ; 0000-0003-1804-7598 ; 0000-0002-4807-1452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34140640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Bingrui</creatorcontrib><creatorcontrib>Pei, Guangsheng</creatorcontrib><creatorcontrib>Yao, Jun</creatorcontrib><creatorcontrib>Ding, Qingqing</creatorcontrib><creatorcontrib>Jia, Peilin</creatorcontrib><creatorcontrib>Zhao, Zhongming</creatorcontrib><title>Cell-type deconvolution analysis identifies cancer-associated myofibroblast component as a poor prognostic factor in multiple cancer types</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Cancer-associated fibroblasts (CAFs) constitute a prominent component of the tumor microenvironment and play critical roles in cancer progression and drug resistance. Although recent studies indicate CAFs may consist of several CAF subtypes, the breadth of CAF heterogeneity and functional roles of CAF subtypes in cancer progression remain unclear. In this study, we implemented a cell-type deconvolutional approach to comprehensively characterize cell-type alternations across 18 cancer types from The Cancer Genome Atlas (TCGA). Pan-cancer survival analysis using deconvoluted CAF subtypes revealed myofibroblastic CAF (myCAF) composition as a poor prognostic factor in nine cancer types. Patients with higher myCAF compositions tend to have worse response to six antineoplastic drugs predicted by a lncRNA-based Elastic Net prediction model (LENP). In addition, integrative mutational analysis identified 14 and 413 genes associated with the differentiation degree of myCAF and inflammatory CAF (iCAF), respectively, with significant enrichment of genes involved in fibroblast and extracellular matrix (ECM)-related pathways. In summary, our findings systematically illustrated the complex roles of CAF subtypes in patient prognosis and drug response, and identified putative driver genes in CAF-subtype differentiation. These results provided novel therapeutic perspectives for targeting CAF subtypes in tumor microenvironment and arranging treatment scheme based on the CAF compositions in different cancer types.</description><subject>101/47</subject><subject>38/39</subject><subject>45/41</subject><subject>45/61</subject><subject>631/61/212/2019</subject><subject>631/67/327</subject><subject>631/67/69</subject><subject>Antineoplastic drugs</subject><subject>Apoptosis</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Cancer</subject><subject>Cancer-Associated Fibroblasts - metabolism</subject><subject>Cancer-Associated Fibroblasts - pathology</subject><subject>Cell Biology</subject><subject>Drug resistance</subject><subject>Extracellular matrix</subject><subject>Fibroblasts</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Inflammation</subject><subject>Internal Medicine</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Myofibroblasts - metabolism</subject><subject>Myofibroblasts - pathology</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Oncology</subject><subject>Patients</subject><subject>Prediction models</subject><subject>Prognosis</subject><subject>Survival analysis</subject><subject>Tumor microenvironment</subject><subject>Tumor Microenvironment - genetics</subject><issn>0950-9232</issn><issn>1476-5594</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9ks2KFDEUhQtRnHb0BVxIwI2bjPmtpJZD4x8MuNF1SCe3mgxVSZmkZPoV5qlN262DIpJF4OY7Nzcnp-teUnJFCddvi6Bca0wYxYRqRfDdo25DheqxlIN43G3IIAkeGGcX3bNSbgkhaiDsaXfBBRWkF2TT3W9hmnA9LIA8uBS_p2mtIUVko50OJRQUPMQaxgAFORsdZGxLSS7YCh7NhzSGXU67yZaKXJqXFBuObEEWLSlltOS0j6nU4NBoXW2VENG8TjUsE5w7ouP95Xn3ZLRTgRfn_bL7-v7dl-1HfPP5w6ft9Q12QrCKPec7rq0Y-0GBVlYLcL6XjjsBvd-J3movpfLUCa8UtVQKYAQGbZ3img38sntz6ttG-7ZCqWYOxTUbbIS0FsOk4EIKzVlDX_-F3qY1N2eOlKRqaAbLB2pvJzAhjqlm645NzXXf656x5nejrv5BteVhDs15GEOr_yFgJ4HLqZQMo1lymG0-GErMMQDmFADTAmB-BsDcNdGr88Trbgb_W_LrxxvAT0BpR3EP-eFJ_2n7A91ZvZI</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Li, Bingrui</creator><creator>Pei, Guangsheng</creator><creator>Yao, Jun</creator><creator>Ding, Qingqing</creator><creator>Jia, Peilin</creator><creator>Zhao, Zhongming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3477-0914</orcidid><orcidid>https://orcid.org/0000-0003-4523-4153</orcidid><orcidid>https://orcid.org/0000-0003-1804-7598</orcidid><orcidid>https://orcid.org/0000-0002-4807-1452</orcidid></search><sort><creationdate>20210715</creationdate><title>Cell-type deconvolution analysis identifies cancer-associated myofibroblast component as a poor prognostic factor in multiple cancer types</title><author>Li, Bingrui ; Pei, Guangsheng ; Yao, Jun ; Ding, Qingqing ; Jia, Peilin ; Zhao, Zhongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-d33b38a4f697e87a84ecd65c3c4e6db46a8d557d1c4d771a154e20e98ac738293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>101/47</topic><topic>38/39</topic><topic>45/41</topic><topic>45/61</topic><topic>631/61/212/2019</topic><topic>631/67/327</topic><topic>631/67/69</topic><topic>Antineoplastic drugs</topic><topic>Apoptosis</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Cancer</topic><topic>Cancer-Associated Fibroblasts - metabolism</topic><topic>Cancer-Associated Fibroblasts - pathology</topic><topic>Cell Biology</topic><topic>Drug resistance</topic><topic>Extracellular matrix</topic><topic>Fibroblasts</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Inflammation</topic><topic>Internal Medicine</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Myofibroblasts - metabolism</topic><topic>Myofibroblasts - pathology</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Oncology</topic><topic>Patients</topic><topic>Prediction models</topic><topic>Prognosis</topic><topic>Survival analysis</topic><topic>Tumor microenvironment</topic><topic>Tumor Microenvironment - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bingrui</creatorcontrib><creatorcontrib>Pei, Guangsheng</creatorcontrib><creatorcontrib>Yao, Jun</creatorcontrib><creatorcontrib>Ding, Qingqing</creatorcontrib><creatorcontrib>Jia, Peilin</creatorcontrib><creatorcontrib>Zhao, Zhongming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bingrui</au><au>Pei, Guangsheng</au><au>Yao, Jun</au><au>Ding, Qingqing</au><au>Jia, Peilin</au><au>Zhao, Zhongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell-type deconvolution analysis identifies cancer-associated myofibroblast component as a poor prognostic factor in multiple cancer types</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2021-07-15</date><risdate>2021</risdate><volume>40</volume><issue>28</issue><spage>4686</spage><epage>4694</epage><pages>4686-4694</pages><issn>0950-9232</issn><issn>1476-5594</issn><eissn>1476-5594</eissn><abstract>Cancer-associated fibroblasts (CAFs) constitute a prominent component of the tumor microenvironment and play critical roles in cancer progression and drug resistance. Although recent studies indicate CAFs may consist of several CAF subtypes, the breadth of CAF heterogeneity and functional roles of CAF subtypes in cancer progression remain unclear. In this study, we implemented a cell-type deconvolutional approach to comprehensively characterize cell-type alternations across 18 cancer types from The Cancer Genome Atlas (TCGA). Pan-cancer survival analysis using deconvoluted CAF subtypes revealed myofibroblastic CAF (myCAF) composition as a poor prognostic factor in nine cancer types. Patients with higher myCAF compositions tend to have worse response to six antineoplastic drugs predicted by a lncRNA-based Elastic Net prediction model (LENP). In addition, integrative mutational analysis identified 14 and 413 genes associated with the differentiation degree of myCAF and inflammatory CAF (iCAF), respectively, with significant enrichment of genes involved in fibroblast and extracellular matrix (ECM)-related pathways. In summary, our findings systematically illustrated the complex roles of CAF subtypes in patient prognosis and drug response, and identified putative driver genes in CAF-subtype differentiation. These results provided novel therapeutic perspectives for targeting CAF subtypes in tumor microenvironment and arranging treatment scheme based on the CAF compositions in different cancer types.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34140640</pmid><doi>10.1038/s41388-021-01870-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3477-0914</orcidid><orcidid>https://orcid.org/0000-0003-4523-4153</orcidid><orcidid>https://orcid.org/0000-0003-1804-7598</orcidid><orcidid>https://orcid.org/0000-0002-4807-1452</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2021-07, Vol.40 (28), p.4686-4694
issn 0950-9232
1476-5594
1476-5594
language eng
recordid cdi_proquest_miscellaneous_2543454832
source Nexis UK; Springer Nature
subjects 101/47
38/39
45/41
45/61
631/61/212/2019
631/67/327
631/67/69
Antineoplastic drugs
Apoptosis
Biomarkers, Tumor - genetics
Biomarkers, Tumor - metabolism
Cancer
Cancer-Associated Fibroblasts - metabolism
Cancer-Associated Fibroblasts - pathology
Cell Biology
Drug resistance
Extracellular matrix
Fibroblasts
Gene Expression Regulation, Neoplastic
Genetic aspects
Genomes
Human Genetics
Humans
Identification and classification
Inflammation
Internal Medicine
Medical prognosis
Medicine
Medicine & Public Health
Myofibroblasts - metabolism
Myofibroblasts - pathology
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - pathology
Oncology
Patients
Prediction models
Prognosis
Survival analysis
Tumor microenvironment
Tumor Microenvironment - genetics
title Cell-type deconvolution analysis identifies cancer-associated myofibroblast component as a poor prognostic factor in multiple cancer types
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell-type%20deconvolution%20analysis%20identifies%20cancer-associated%20myofibroblast%20component%20as%20a%20poor%20prognostic%20factor%20in%20multiple%20cancer%20types&rft.jtitle=Oncogene&rft.au=Li,%20Bingrui&rft.date=2021-07-15&rft.volume=40&rft.issue=28&rft.spage=4686&rft.epage=4694&rft.pages=4686-4694&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-021-01870-x&rft_dat=%3Cgale_proqu%3EA668622341%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-d33b38a4f697e87a84ecd65c3c4e6db46a8d557d1c4d771a154e20e98ac738293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2551799505&rft_id=info:pmid/34140640&rft_galeid=A668622341&rfr_iscdi=true