Loading…
Cell-type deconvolution analysis identifies cancer-associated myofibroblast component as a poor prognostic factor in multiple cancer types
Cancer-associated fibroblasts (CAFs) constitute a prominent component of the tumor microenvironment and play critical roles in cancer progression and drug resistance. Although recent studies indicate CAFs may consist of several CAF subtypes, the breadth of CAF heterogeneity and functional roles of C...
Saved in:
Published in: | Oncogene 2021-07, Vol.40 (28), p.4686-4694 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c442t-d33b38a4f697e87a84ecd65c3c4e6db46a8d557d1c4d771a154e20e98ac738293 |
---|---|
cites | cdi_FETCH-LOGICAL-c442t-d33b38a4f697e87a84ecd65c3c4e6db46a8d557d1c4d771a154e20e98ac738293 |
container_end_page | 4694 |
container_issue | 28 |
container_start_page | 4686 |
container_title | Oncogene |
container_volume | 40 |
creator | Li, Bingrui Pei, Guangsheng Yao, Jun Ding, Qingqing Jia, Peilin Zhao, Zhongming |
description | Cancer-associated fibroblasts (CAFs) constitute a prominent component of the tumor microenvironment and play critical roles in cancer progression and drug resistance. Although recent studies indicate CAFs may consist of several CAF subtypes, the breadth of CAF heterogeneity and functional roles of CAF subtypes in cancer progression remain unclear. In this study, we implemented a cell-type deconvolutional approach to comprehensively characterize cell-type alternations across 18 cancer types from The Cancer Genome Atlas (TCGA). Pan-cancer survival analysis using deconvoluted CAF subtypes revealed myofibroblastic CAF (myCAF) composition as a poor prognostic factor in nine cancer types. Patients with higher myCAF compositions tend to have worse response to six antineoplastic drugs predicted by a lncRNA-based Elastic Net prediction model (LENP). In addition, integrative mutational analysis identified 14 and 413 genes associated with the differentiation degree of myCAF and inflammatory CAF (iCAF), respectively, with significant enrichment of genes involved in fibroblast and extracellular matrix (ECM)-related pathways. In summary, our findings systematically illustrated the complex roles of CAF subtypes in patient prognosis and drug response, and identified putative driver genes in CAF-subtype differentiation. These results provided novel therapeutic perspectives for targeting CAF subtypes in tumor microenvironment and arranging treatment scheme based on the CAF compositions in different cancer types. |
doi_str_mv | 10.1038/s41388-021-01870-x |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2543454832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A668622341</galeid><sourcerecordid>A668622341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-d33b38a4f697e87a84ecd65c3c4e6db46a8d557d1c4d771a154e20e98ac738293</originalsourceid><addsrcrecordid>eNp9ks2KFDEUhQtRnHb0BVxIwI2bjPmtpJZD4x8MuNF1SCe3mgxVSZmkZPoV5qlN262DIpJF4OY7Nzcnp-teUnJFCddvi6Bca0wYxYRqRfDdo25DheqxlIN43G3IIAkeGGcX3bNSbgkhaiDsaXfBBRWkF2TT3W9hmnA9LIA8uBS_p2mtIUVko50OJRQUPMQaxgAFORsdZGxLSS7YCh7NhzSGXU67yZaKXJqXFBuObEEWLSlltOS0j6nU4NBoXW2VENG8TjUsE5w7ouP95Xn3ZLRTgRfn_bL7-v7dl-1HfPP5w6ft9Q12QrCKPec7rq0Y-0GBVlYLcL6XjjsBvd-J3movpfLUCa8UtVQKYAQGbZ3img38sntz6ttG-7ZCqWYOxTUbbIS0FsOk4EIKzVlDX_-F3qY1N2eOlKRqaAbLB2pvJzAhjqlm645NzXXf656x5nejrv5BteVhDs15GEOr_yFgJ4HLqZQMo1lymG0-GErMMQDmFADTAmB-BsDcNdGr88Trbgb_W_LrxxvAT0BpR3EP-eFJ_2n7A91ZvZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551799505</pqid></control><display><type>article</type><title>Cell-type deconvolution analysis identifies cancer-associated myofibroblast component as a poor prognostic factor in multiple cancer types</title><source>Nexis UK</source><source>Springer Nature</source><creator>Li, Bingrui ; Pei, Guangsheng ; Yao, Jun ; Ding, Qingqing ; Jia, Peilin ; Zhao, Zhongming</creator><creatorcontrib>Li, Bingrui ; Pei, Guangsheng ; Yao, Jun ; Ding, Qingqing ; Jia, Peilin ; Zhao, Zhongming</creatorcontrib><description>Cancer-associated fibroblasts (CAFs) constitute a prominent component of the tumor microenvironment and play critical roles in cancer progression and drug resistance. Although recent studies indicate CAFs may consist of several CAF subtypes, the breadth of CAF heterogeneity and functional roles of CAF subtypes in cancer progression remain unclear. In this study, we implemented a cell-type deconvolutional approach to comprehensively characterize cell-type alternations across 18 cancer types from The Cancer Genome Atlas (TCGA). Pan-cancer survival analysis using deconvoluted CAF subtypes revealed myofibroblastic CAF (myCAF) composition as a poor prognostic factor in nine cancer types. Patients with higher myCAF compositions tend to have worse response to six antineoplastic drugs predicted by a lncRNA-based Elastic Net prediction model (LENP). In addition, integrative mutational analysis identified 14 and 413 genes associated with the differentiation degree of myCAF and inflammatory CAF (iCAF), respectively, with significant enrichment of genes involved in fibroblast and extracellular matrix (ECM)-related pathways. In summary, our findings systematically illustrated the complex roles of CAF subtypes in patient prognosis and drug response, and identified putative driver genes in CAF-subtype differentiation. These results provided novel therapeutic perspectives for targeting CAF subtypes in tumor microenvironment and arranging treatment scheme based on the CAF compositions in different cancer types.</description><identifier>ISSN: 0950-9232</identifier><identifier>ISSN: 1476-5594</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-021-01870-x</identifier><identifier>PMID: 34140640</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/47 ; 38/39 ; 45/41 ; 45/61 ; 631/61/212/2019 ; 631/67/327 ; 631/67/69 ; Antineoplastic drugs ; Apoptosis ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Cancer ; Cancer-Associated Fibroblasts - metabolism ; Cancer-Associated Fibroblasts - pathology ; Cell Biology ; Drug resistance ; Extracellular matrix ; Fibroblasts ; Gene Expression Regulation, Neoplastic ; Genetic aspects ; Genomes ; Human Genetics ; Humans ; Identification and classification ; Inflammation ; Internal Medicine ; Medical prognosis ; Medicine ; Medicine & Public Health ; Myofibroblasts - metabolism ; Myofibroblasts - pathology ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - pathology ; Oncology ; Patients ; Prediction models ; Prognosis ; Survival analysis ; Tumor microenvironment ; Tumor Microenvironment - genetics</subject><ispartof>Oncogene, 2021-07, Vol.40 (28), p.4686-4694</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-d33b38a4f697e87a84ecd65c3c4e6db46a8d557d1c4d771a154e20e98ac738293</citedby><cites>FETCH-LOGICAL-c442t-d33b38a4f697e87a84ecd65c3c4e6db46a8d557d1c4d771a154e20e98ac738293</cites><orcidid>0000-0002-3477-0914 ; 0000-0003-4523-4153 ; 0000-0003-1804-7598 ; 0000-0002-4807-1452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34140640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Bingrui</creatorcontrib><creatorcontrib>Pei, Guangsheng</creatorcontrib><creatorcontrib>Yao, Jun</creatorcontrib><creatorcontrib>Ding, Qingqing</creatorcontrib><creatorcontrib>Jia, Peilin</creatorcontrib><creatorcontrib>Zhao, Zhongming</creatorcontrib><title>Cell-type deconvolution analysis identifies cancer-associated myofibroblast component as a poor prognostic factor in multiple cancer types</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Cancer-associated fibroblasts (CAFs) constitute a prominent component of the tumor microenvironment and play critical roles in cancer progression and drug resistance. Although recent studies indicate CAFs may consist of several CAF subtypes, the breadth of CAF heterogeneity and functional roles of CAF subtypes in cancer progression remain unclear. In this study, we implemented a cell-type deconvolutional approach to comprehensively characterize cell-type alternations across 18 cancer types from The Cancer Genome Atlas (TCGA). Pan-cancer survival analysis using deconvoluted CAF subtypes revealed myofibroblastic CAF (myCAF) composition as a poor prognostic factor in nine cancer types. Patients with higher myCAF compositions tend to have worse response to six antineoplastic drugs predicted by a lncRNA-based Elastic Net prediction model (LENP). In addition, integrative mutational analysis identified 14 and 413 genes associated with the differentiation degree of myCAF and inflammatory CAF (iCAF), respectively, with significant enrichment of genes involved in fibroblast and extracellular matrix (ECM)-related pathways. In summary, our findings systematically illustrated the complex roles of CAF subtypes in patient prognosis and drug response, and identified putative driver genes in CAF-subtype differentiation. These results provided novel therapeutic perspectives for targeting CAF subtypes in tumor microenvironment and arranging treatment scheme based on the CAF compositions in different cancer types.</description><subject>101/47</subject><subject>38/39</subject><subject>45/41</subject><subject>45/61</subject><subject>631/61/212/2019</subject><subject>631/67/327</subject><subject>631/67/69</subject><subject>Antineoplastic drugs</subject><subject>Apoptosis</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Cancer</subject><subject>Cancer-Associated Fibroblasts - metabolism</subject><subject>Cancer-Associated Fibroblasts - pathology</subject><subject>Cell Biology</subject><subject>Drug resistance</subject><subject>Extracellular matrix</subject><subject>Fibroblasts</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Inflammation</subject><subject>Internal Medicine</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Myofibroblasts - metabolism</subject><subject>Myofibroblasts - pathology</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Oncology</subject><subject>Patients</subject><subject>Prediction models</subject><subject>Prognosis</subject><subject>Survival analysis</subject><subject>Tumor microenvironment</subject><subject>Tumor Microenvironment - genetics</subject><issn>0950-9232</issn><issn>1476-5594</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9ks2KFDEUhQtRnHb0BVxIwI2bjPmtpJZD4x8MuNF1SCe3mgxVSZmkZPoV5qlN262DIpJF4OY7Nzcnp-teUnJFCddvi6Bca0wYxYRqRfDdo25DheqxlIN43G3IIAkeGGcX3bNSbgkhaiDsaXfBBRWkF2TT3W9hmnA9LIA8uBS_p2mtIUVko50OJRQUPMQaxgAFORsdZGxLSS7YCh7NhzSGXU67yZaKXJqXFBuObEEWLSlltOS0j6nU4NBoXW2VENG8TjUsE5w7ouP95Xn3ZLRTgRfn_bL7-v7dl-1HfPP5w6ft9Q12QrCKPec7rq0Y-0GBVlYLcL6XjjsBvd-J3movpfLUCa8UtVQKYAQGbZ3img38sntz6ttG-7ZCqWYOxTUbbIS0FsOk4EIKzVlDX_-F3qY1N2eOlKRqaAbLB2pvJzAhjqlm645NzXXf656x5nejrv5BteVhDs15GEOr_yFgJ4HLqZQMo1lymG0-GErMMQDmFADTAmB-BsDcNdGr88Trbgb_W_LrxxvAT0BpR3EP-eFJ_2n7A91ZvZI</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Li, Bingrui</creator><creator>Pei, Guangsheng</creator><creator>Yao, Jun</creator><creator>Ding, Qingqing</creator><creator>Jia, Peilin</creator><creator>Zhao, Zhongming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3477-0914</orcidid><orcidid>https://orcid.org/0000-0003-4523-4153</orcidid><orcidid>https://orcid.org/0000-0003-1804-7598</orcidid><orcidid>https://orcid.org/0000-0002-4807-1452</orcidid></search><sort><creationdate>20210715</creationdate><title>Cell-type deconvolution analysis identifies cancer-associated myofibroblast component as a poor prognostic factor in multiple cancer types</title><author>Li, Bingrui ; Pei, Guangsheng ; Yao, Jun ; Ding, Qingqing ; Jia, Peilin ; Zhao, Zhongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-d33b38a4f697e87a84ecd65c3c4e6db46a8d557d1c4d771a154e20e98ac738293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>101/47</topic><topic>38/39</topic><topic>45/41</topic><topic>45/61</topic><topic>631/61/212/2019</topic><topic>631/67/327</topic><topic>631/67/69</topic><topic>Antineoplastic drugs</topic><topic>Apoptosis</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Cancer</topic><topic>Cancer-Associated Fibroblasts - metabolism</topic><topic>Cancer-Associated Fibroblasts - pathology</topic><topic>Cell Biology</topic><topic>Drug resistance</topic><topic>Extracellular matrix</topic><topic>Fibroblasts</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Inflammation</topic><topic>Internal Medicine</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Myofibroblasts - metabolism</topic><topic>Myofibroblasts - pathology</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Oncology</topic><topic>Patients</topic><topic>Prediction models</topic><topic>Prognosis</topic><topic>Survival analysis</topic><topic>Tumor microenvironment</topic><topic>Tumor Microenvironment - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bingrui</creatorcontrib><creatorcontrib>Pei, Guangsheng</creatorcontrib><creatorcontrib>Yao, Jun</creatorcontrib><creatorcontrib>Ding, Qingqing</creatorcontrib><creatorcontrib>Jia, Peilin</creatorcontrib><creatorcontrib>Zhao, Zhongming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bingrui</au><au>Pei, Guangsheng</au><au>Yao, Jun</au><au>Ding, Qingqing</au><au>Jia, Peilin</au><au>Zhao, Zhongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell-type deconvolution analysis identifies cancer-associated myofibroblast component as a poor prognostic factor in multiple cancer types</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2021-07-15</date><risdate>2021</risdate><volume>40</volume><issue>28</issue><spage>4686</spage><epage>4694</epage><pages>4686-4694</pages><issn>0950-9232</issn><issn>1476-5594</issn><eissn>1476-5594</eissn><abstract>Cancer-associated fibroblasts (CAFs) constitute a prominent component of the tumor microenvironment and play critical roles in cancer progression and drug resistance. Although recent studies indicate CAFs may consist of several CAF subtypes, the breadth of CAF heterogeneity and functional roles of CAF subtypes in cancer progression remain unclear. In this study, we implemented a cell-type deconvolutional approach to comprehensively characterize cell-type alternations across 18 cancer types from The Cancer Genome Atlas (TCGA). Pan-cancer survival analysis using deconvoluted CAF subtypes revealed myofibroblastic CAF (myCAF) composition as a poor prognostic factor in nine cancer types. Patients with higher myCAF compositions tend to have worse response to six antineoplastic drugs predicted by a lncRNA-based Elastic Net prediction model (LENP). In addition, integrative mutational analysis identified 14 and 413 genes associated with the differentiation degree of myCAF and inflammatory CAF (iCAF), respectively, with significant enrichment of genes involved in fibroblast and extracellular matrix (ECM)-related pathways. In summary, our findings systematically illustrated the complex roles of CAF subtypes in patient prognosis and drug response, and identified putative driver genes in CAF-subtype differentiation. These results provided novel therapeutic perspectives for targeting CAF subtypes in tumor microenvironment and arranging treatment scheme based on the CAF compositions in different cancer types.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34140640</pmid><doi>10.1038/s41388-021-01870-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3477-0914</orcidid><orcidid>https://orcid.org/0000-0003-4523-4153</orcidid><orcidid>https://orcid.org/0000-0003-1804-7598</orcidid><orcidid>https://orcid.org/0000-0002-4807-1452</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2021-07, Vol.40 (28), p.4686-4694 |
issn | 0950-9232 1476-5594 1476-5594 |
language | eng |
recordid | cdi_proquest_miscellaneous_2543454832 |
source | Nexis UK; Springer Nature |
subjects | 101/47 38/39 45/41 45/61 631/61/212/2019 631/67/327 631/67/69 Antineoplastic drugs Apoptosis Biomarkers, Tumor - genetics Biomarkers, Tumor - metabolism Cancer Cancer-Associated Fibroblasts - metabolism Cancer-Associated Fibroblasts - pathology Cell Biology Drug resistance Extracellular matrix Fibroblasts Gene Expression Regulation, Neoplastic Genetic aspects Genomes Human Genetics Humans Identification and classification Inflammation Internal Medicine Medical prognosis Medicine Medicine & Public Health Myofibroblasts - metabolism Myofibroblasts - pathology Neoplasms - drug therapy Neoplasms - genetics Neoplasms - pathology Oncology Patients Prediction models Prognosis Survival analysis Tumor microenvironment Tumor Microenvironment - genetics |
title | Cell-type deconvolution analysis identifies cancer-associated myofibroblast component as a poor prognostic factor in multiple cancer types |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell-type%20deconvolution%20analysis%20identifies%20cancer-associated%20myofibroblast%20component%20as%20a%20poor%20prognostic%20factor%20in%20multiple%20cancer%20types&rft.jtitle=Oncogene&rft.au=Li,%20Bingrui&rft.date=2021-07-15&rft.volume=40&rft.issue=28&rft.spage=4686&rft.epage=4694&rft.pages=4686-4694&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-021-01870-x&rft_dat=%3Cgale_proqu%3EA668622341%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-d33b38a4f697e87a84ecd65c3c4e6db46a8d557d1c4d771a154e20e98ac738293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2551799505&rft_id=info:pmid/34140640&rft_galeid=A668622341&rfr_iscdi=true |