Loading…

Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling

Passive daytime radiative cooling has recently become an attractive approach to address the global energy demand associated with modern refrigeration technologies. One technique to increase the radiative cooling performance is to engineer the surface of a polar dielectric material to enhance its emi...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2021-05, Vol.29 (11), p.16857-16866
Main Authors: Whitworth, G. L., Jaramillo-Fernandez, J., Pariente, J. A., Garcia, P. D., Blanco, A., Lopez, C., Sotomayor-Torres, C. M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-352001b1707cf23e0d9d3cba034bec31e0d2d93b5fc923593201bfea39f65af3
cites cdi_FETCH-LOGICAL-c297t-352001b1707cf23e0d9d3cba034bec31e0d2d93b5fc923593201bfea39f65af3
container_end_page 16866
container_issue 11
container_start_page 16857
container_title Optics express
container_volume 29
creator Whitworth, G. L.
Jaramillo-Fernandez, J.
Pariente, J. A.
Garcia, P. D.
Blanco, A.
Lopez, C.
Sotomayor-Torres, C. M.
description Passive daytime radiative cooling has recently become an attractive approach to address the global energy demand associated with modern refrigeration technologies. One technique to increase the radiative cooling performance is to engineer the surface of a polar dielectric material to enhance its emittance at wavelengths in the atmospheric infrared transparency window (8–13 µm) by outcoupling surface-phonon polaritons (SPhPs) into free-space. Here we present a theoretical investigation of new surface morphologies based upon self-assembled silica photonic crystals (PCs) using an in-house built rigorous coupled-wave analysis (RCWA) code. Simulations predict that silica micro-sphere PCs can reach up to 73 K below ambient temperature, when solar absorption and conductive/convective losses can be neglected. Micro-shell structures are studied to explore the direct outcoupling of the SPhP, resulting in near-unity emittance between 8 and 10 µm. Additionally, the effect of material composition is explored by simulating soda-lime glass micro-shells, which, in turn, exhibit a temperature reduction of 61 K below ambient temperature. The RCWA code was compared to FTIR measurements of silica micro-spheres, self-assembled on microscope slides.
doi_str_mv 10.1364/OE.420989
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2544162541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544162541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-352001b1707cf23e0d9d3cba034bec31e0d2d93b5fc923593201bfea39f65af3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqWw4A-8hEVav9LUS1TCQ6qURbu3HMcmRkkcPAlS_x6jsmAzM5o5urpzEbqnZEX5RqyrciUYkVt5gRaUSJEJsi0u_83X6AbgkxAqClks0OHg-7nTkw8D4OBw700MGYytjXYNre06zJ4x-M4bjcc2TGHwBpt4gkl3gF2IOOrGJ4Fvi00InR8-btGVS0d799eX6PhSHndv2b56fd897TPDZDFlPGfJRk0LUhjHuCWNbLipNeGitobTtGCN5HXujGQ8l5wl2lnNpdvk2vElejjLjjF8zRYm1XswybEebJhBsVwIukmVJvTxjKbnAKJ1aoy-1_GkKFG_uamqVOfc-A9HgWBX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544162541</pqid></control><display><type>article</type><title>Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling</title><source>EZB Electronic Journals Library</source><creator>Whitworth, G. L. ; Jaramillo-Fernandez, J. ; Pariente, J. A. ; Garcia, P. D. ; Blanco, A. ; Lopez, C. ; Sotomayor-Torres, C. M.</creator><creatorcontrib>Whitworth, G. L. ; Jaramillo-Fernandez, J. ; Pariente, J. A. ; Garcia, P. D. ; Blanco, A. ; Lopez, C. ; Sotomayor-Torres, C. M.</creatorcontrib><description>Passive daytime radiative cooling has recently become an attractive approach to address the global energy demand associated with modern refrigeration technologies. One technique to increase the radiative cooling performance is to engineer the surface of a polar dielectric material to enhance its emittance at wavelengths in the atmospheric infrared transparency window (8–13 µm) by outcoupling surface-phonon polaritons (SPhPs) into free-space. Here we present a theoretical investigation of new surface morphologies based upon self-assembled silica photonic crystals (PCs) using an in-house built rigorous coupled-wave analysis (RCWA) code. Simulations predict that silica micro-sphere PCs can reach up to 73 K below ambient temperature, when solar absorption and conductive/convective losses can be neglected. Micro-shell structures are studied to explore the direct outcoupling of the SPhP, resulting in near-unity emittance between 8 and 10 µm. Additionally, the effect of material composition is explored by simulating soda-lime glass micro-shells, which, in turn, exhibit a temperature reduction of 61 K below ambient temperature. The RCWA code was compared to FTIR measurements of silica micro-spheres, self-assembled on microscope slides.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.420989</identifier><language>eng</language><ispartof>Optics express, 2021-05, Vol.29 (11), p.16857-16866</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-352001b1707cf23e0d9d3cba034bec31e0d2d93b5fc923593201bfea39f65af3</citedby><cites>FETCH-LOGICAL-c297t-352001b1707cf23e0d9d3cba034bec31e0d2d93b5fc923593201bfea39f65af3</cites><orcidid>0000-0001-5635-4463 ; 0000-0002-4787-3904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Whitworth, G. L.</creatorcontrib><creatorcontrib>Jaramillo-Fernandez, J.</creatorcontrib><creatorcontrib>Pariente, J. A.</creatorcontrib><creatorcontrib>Garcia, P. D.</creatorcontrib><creatorcontrib>Blanco, A.</creatorcontrib><creatorcontrib>Lopez, C.</creatorcontrib><creatorcontrib>Sotomayor-Torres, C. M.</creatorcontrib><title>Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling</title><title>Optics express</title><description>Passive daytime radiative cooling has recently become an attractive approach to address the global energy demand associated with modern refrigeration technologies. One technique to increase the radiative cooling performance is to engineer the surface of a polar dielectric material to enhance its emittance at wavelengths in the atmospheric infrared transparency window (8–13 µm) by outcoupling surface-phonon polaritons (SPhPs) into free-space. Here we present a theoretical investigation of new surface morphologies based upon self-assembled silica photonic crystals (PCs) using an in-house built rigorous coupled-wave analysis (RCWA) code. Simulations predict that silica micro-sphere PCs can reach up to 73 K below ambient temperature, when solar absorption and conductive/convective losses can be neglected. Micro-shell structures are studied to explore the direct outcoupling of the SPhP, resulting in near-unity emittance between 8 and 10 µm. Additionally, the effect of material composition is explored by simulating soda-lime glass micro-shells, which, in turn, exhibit a temperature reduction of 61 K below ambient temperature. The RCWA code was compared to FTIR measurements of silica micro-spheres, self-assembled on microscope slides.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqWw4A-8hEVav9LUS1TCQ6qURbu3HMcmRkkcPAlS_x6jsmAzM5o5urpzEbqnZEX5RqyrciUYkVt5gRaUSJEJsi0u_83X6AbgkxAqClks0OHg-7nTkw8D4OBw700MGYytjXYNre06zJ4x-M4bjcc2TGHwBpt4gkl3gF2IOOrGJ4Fvi00InR8-btGVS0d799eX6PhSHndv2b56fd897TPDZDFlPGfJRk0LUhjHuCWNbLipNeGitobTtGCN5HXujGQ8l5wl2lnNpdvk2vElejjLjjF8zRYm1XswybEebJhBsVwIukmVJvTxjKbnAKJ1aoy-1_GkKFG_uamqVOfc-A9HgWBX</recordid><startdate>20210524</startdate><enddate>20210524</enddate><creator>Whitworth, G. L.</creator><creator>Jaramillo-Fernandez, J.</creator><creator>Pariente, J. A.</creator><creator>Garcia, P. D.</creator><creator>Blanco, A.</creator><creator>Lopez, C.</creator><creator>Sotomayor-Torres, C. M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5635-4463</orcidid><orcidid>https://orcid.org/0000-0002-4787-3904</orcidid></search><sort><creationdate>20210524</creationdate><title>Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling</title><author>Whitworth, G. L. ; Jaramillo-Fernandez, J. ; Pariente, J. A. ; Garcia, P. D. ; Blanco, A. ; Lopez, C. ; Sotomayor-Torres, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-352001b1707cf23e0d9d3cba034bec31e0d2d93b5fc923593201bfea39f65af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitworth, G. L.</creatorcontrib><creatorcontrib>Jaramillo-Fernandez, J.</creatorcontrib><creatorcontrib>Pariente, J. A.</creatorcontrib><creatorcontrib>Garcia, P. D.</creatorcontrib><creatorcontrib>Blanco, A.</creatorcontrib><creatorcontrib>Lopez, C.</creatorcontrib><creatorcontrib>Sotomayor-Torres, C. M.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitworth, G. L.</au><au>Jaramillo-Fernandez, J.</au><au>Pariente, J. A.</au><au>Garcia, P. D.</au><au>Blanco, A.</au><au>Lopez, C.</au><au>Sotomayor-Torres, C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling</atitle><jtitle>Optics express</jtitle><date>2021-05-24</date><risdate>2021</risdate><volume>29</volume><issue>11</issue><spage>16857</spage><epage>16866</epage><pages>16857-16866</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Passive daytime radiative cooling has recently become an attractive approach to address the global energy demand associated with modern refrigeration technologies. One technique to increase the radiative cooling performance is to engineer the surface of a polar dielectric material to enhance its emittance at wavelengths in the atmospheric infrared transparency window (8–13 µm) by outcoupling surface-phonon polaritons (SPhPs) into free-space. Here we present a theoretical investigation of new surface morphologies based upon self-assembled silica photonic crystals (PCs) using an in-house built rigorous coupled-wave analysis (RCWA) code. Simulations predict that silica micro-sphere PCs can reach up to 73 K below ambient temperature, when solar absorption and conductive/convective losses can be neglected. Micro-shell structures are studied to explore the direct outcoupling of the SPhP, resulting in near-unity emittance between 8 and 10 µm. Additionally, the effect of material composition is explored by simulating soda-lime glass micro-shells, which, in turn, exhibit a temperature reduction of 61 K below ambient temperature. The RCWA code was compared to FTIR measurements of silica micro-spheres, self-assembled on microscope slides.</abstract><doi>10.1364/OE.420989</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5635-4463</orcidid><orcidid>https://orcid.org/0000-0002-4787-3904</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2021-05, Vol.29 (11), p.16857-16866
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2544162541
source EZB Electronic Journals Library
title Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulations%20of%20micro-sphere/shell%202D%20silica%20photonic%20crystals%20for%20radiative%20cooling&rft.jtitle=Optics%20express&rft.au=Whitworth,%20G.%20L.&rft.date=2021-05-24&rft.volume=29&rft.issue=11&rft.spage=16857&rft.epage=16866&rft.pages=16857-16866&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.420989&rft_dat=%3Cproquest_cross%3E2544162541%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-352001b1707cf23e0d9d3cba034bec31e0d2d93b5fc923593201bfea39f65af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544162541&rft_id=info:pmid/&rfr_iscdi=true