Loading…

Predictive modelling of piezometric head and seepage discharge in earth dam using soft computational models

Predictions of pore pressure and seepage discharge are the most important parameters in the design of earth dams and assessing their safety during the operational period as well. In this research, soft computing models namely multi-layer perceptron neural network (MLPNN), support vector machine (SVM...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2021-11, Vol.28 (43), p.60842-60856
Main Authors: Parsaie, Abbas, Haghiabi, Amir Hamzeh, Latif, Sarmad Dashti, Tripathi, Ravi Prakash
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-7c4fb388362b0098b1e26690f2be2fbdd9b015cc68cff98f4618fd5d866d16ec3
cites cdi_FETCH-LOGICAL-c352t-7c4fb388362b0098b1e26690f2be2fbdd9b015cc68cff98f4618fd5d866d16ec3
container_end_page 60856
container_issue 43
container_start_page 60842
container_title Environmental science and pollution research international
container_volume 28
creator Parsaie, Abbas
Haghiabi, Amir Hamzeh
Latif, Sarmad Dashti
Tripathi, Ravi Prakash
description Predictions of pore pressure and seepage discharge are the most important parameters in the design of earth dams and assessing their safety during the operational period as well. In this research, soft computing models namely multi-layer perceptron neural network (MLPNN), support vector machine (SVM), multivariate adaptive regression splines (MARS), genetic programming (GP), M5 algorithm, and group method of data handling (GMDH) were used to predict the piezometric head in the core and the seepage discharge through the body of earth dam. For this purpose, the data recorded by the absolute instrument during the last 94 months of Shahid Kazemi Bukan Dam were used. The results showed that all of the applied models had a permissible level of accuracy in the prediction of the piezometric heads. The average error indices for the models in the training phase were R 2 = 0.957 and RMSE= 0.806 and in the testing phase were equal to R 2 = 0.949 and RMSE= 0.932, respectively. The performances of all models except the M5 and MARS in predicting seepage discharge are nearly identical; however, the best is the MARS, and the weakest is the M5 algorithm.
doi_str_mv 10.1007/s11356-021-15029-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2544881157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595779226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-7c4fb388362b0098b1e26690f2be2fbdd9b015cc68cff98f4618fd5d866d16ec3</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVIIdttX6AnQS65OJFkWZaOYWmSQqA9tGchS6NdbWzLkexC-vTVxoVADznNHL7vZ-ZH6Asl15SQ9iZTWjeiIoxWtCFMVfwMbaigvGq5UudoQxTnFa05v0Afcz4Swohi7QY9_Ujggp3Db8BDdND3Ydzj6PEU4E8cYE7B4gMYh83ocAaYzB6wC9keTCpbGDGYNB-wMwNe8knO0c_YxmFaZjOHOJp-Tc6f0Adv-gyf_80t-nX39efuoXr8fv9td_tY2bphc9Va7rtaylqwjhAlOwpMCEU864D5zjnVEdpYK6T1XknPBZXeNU4K4agAW2_R1Zo7pfi8QJ71UO4tr5kR4pI1aziXktKmLejlf-gxLqmcfKJU07aKMVEotlI2xZwTeD2lMJj0oinRp_712r8u_evX_jUvUr1KucDjHtJb9DvWXy1GiZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595779226</pqid></control><display><type>article</type><title>Predictive modelling of piezometric head and seepage discharge in earth dam using soft computational models</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>Parsaie, Abbas ; Haghiabi, Amir Hamzeh ; Latif, Sarmad Dashti ; Tripathi, Ravi Prakash</creator><creatorcontrib>Parsaie, Abbas ; Haghiabi, Amir Hamzeh ; Latif, Sarmad Dashti ; Tripathi, Ravi Prakash</creatorcontrib><description>Predictions of pore pressure and seepage discharge are the most important parameters in the design of earth dams and assessing their safety during the operational period as well. In this research, soft computing models namely multi-layer perceptron neural network (MLPNN), support vector machine (SVM), multivariate adaptive regression splines (MARS), genetic programming (GP), M5 algorithm, and group method of data handling (GMDH) were used to predict the piezometric head in the core and the seepage discharge through the body of earth dam. For this purpose, the data recorded by the absolute instrument during the last 94 months of Shahid Kazemi Bukan Dam were used. The results showed that all of the applied models had a permissible level of accuracy in the prediction of the piezometric heads. The average error indices for the models in the training phase were R 2 = 0.957 and RMSE= 0.806 and in the testing phase were equal to R 2 = 0.949 and RMSE= 0.932, respectively. The performances of all models except the M5 and MARS in predicting seepage discharge are nearly identical; however, the best is the MARS, and the weakest is the M5 algorithm.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-021-15029-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Computer applications ; Dam design ; Dam engineering ; Design parameters ; Discharge ; Earth and Environmental Science ; Earth dams ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Genetic algorithms ; Group method of data handling ; Mars ; Mathematical models ; Multilayers ; Neural networks ; Piezometric head ; Pore pressure ; Prediction models ; Research Article ; Seepage ; Soft computing ; Support vector machines ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2021-11, Vol.28 (43), p.60842-60856</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-7c4fb388362b0098b1e26690f2be2fbdd9b015cc68cff98f4618fd5d866d16ec3</citedby><cites>FETCH-LOGICAL-c352t-7c4fb388362b0098b1e26690f2be2fbdd9b015cc68cff98f4618fd5d866d16ec3</cites><orcidid>0000-0002-0417-3545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2595779226/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2595779226?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Parsaie, Abbas</creatorcontrib><creatorcontrib>Haghiabi, Amir Hamzeh</creatorcontrib><creatorcontrib>Latif, Sarmad Dashti</creatorcontrib><creatorcontrib>Tripathi, Ravi Prakash</creatorcontrib><title>Predictive modelling of piezometric head and seepage discharge in earth dam using soft computational models</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><description>Predictions of pore pressure and seepage discharge are the most important parameters in the design of earth dams and assessing their safety during the operational period as well. In this research, soft computing models namely multi-layer perceptron neural network (MLPNN), support vector machine (SVM), multivariate adaptive regression splines (MARS), genetic programming (GP), M5 algorithm, and group method of data handling (GMDH) were used to predict the piezometric head in the core and the seepage discharge through the body of earth dam. For this purpose, the data recorded by the absolute instrument during the last 94 months of Shahid Kazemi Bukan Dam were used. The results showed that all of the applied models had a permissible level of accuracy in the prediction of the piezometric heads. The average error indices for the models in the training phase were R 2 = 0.957 and RMSE= 0.806 and in the testing phase were equal to R 2 = 0.949 and RMSE= 0.932, respectively. The performances of all models except the M5 and MARS in predicting seepage discharge are nearly identical; however, the best is the MARS, and the weakest is the M5 algorithm.</description><subject>Algorithms</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Computer applications</subject><subject>Dam design</subject><subject>Dam engineering</subject><subject>Design parameters</subject><subject>Discharge</subject><subject>Earth and Environmental Science</subject><subject>Earth dams</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Genetic algorithms</subject><subject>Group method of data handling</subject><subject>Mars</subject><subject>Mathematical models</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Piezometric head</subject><subject>Pore pressure</subject><subject>Prediction models</subject><subject>Research Article</subject><subject>Seepage</subject><subject>Soft computing</subject><subject>Support vector machines</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kMFq3DAQhkVIIdttX6AnQS65OJFkWZaOYWmSQqA9tGchS6NdbWzLkexC-vTVxoVADznNHL7vZ-ZH6Asl15SQ9iZTWjeiIoxWtCFMVfwMbaigvGq5UudoQxTnFa05v0Afcz4Swohi7QY9_Ujggp3Db8BDdND3Ydzj6PEU4E8cYE7B4gMYh83ocAaYzB6wC9keTCpbGDGYNB-wMwNe8knO0c_YxmFaZjOHOJp-Tc6f0Adv-gyf_80t-nX39efuoXr8fv9td_tY2bphc9Va7rtaylqwjhAlOwpMCEU864D5zjnVEdpYK6T1XknPBZXeNU4K4agAW2_R1Zo7pfi8QJ71UO4tr5kR4pI1aziXktKmLejlf-gxLqmcfKJU07aKMVEotlI2xZwTeD2lMJj0oinRp_712r8u_evX_jUvUr1KucDjHtJb9DvWXy1GiZs</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Parsaie, Abbas</creator><creator>Haghiabi, Amir Hamzeh</creator><creator>Latif, Sarmad Dashti</creator><creator>Tripathi, Ravi Prakash</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0417-3545</orcidid></search><sort><creationdate>20211101</creationdate><title>Predictive modelling of piezometric head and seepage discharge in earth dam using soft computational models</title><author>Parsaie, Abbas ; Haghiabi, Amir Hamzeh ; Latif, Sarmad Dashti ; Tripathi, Ravi Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-7c4fb388362b0098b1e26690f2be2fbdd9b015cc68cff98f4618fd5d866d16ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Computer applications</topic><topic>Dam design</topic><topic>Dam engineering</topic><topic>Design parameters</topic><topic>Discharge</topic><topic>Earth and Environmental Science</topic><topic>Earth dams</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Genetic algorithms</topic><topic>Group method of data handling</topic><topic>Mars</topic><topic>Mathematical models</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Piezometric head</topic><topic>Pore pressure</topic><topic>Prediction models</topic><topic>Research Article</topic><topic>Seepage</topic><topic>Soft computing</topic><topic>Support vector machines</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parsaie, Abbas</creatorcontrib><creatorcontrib>Haghiabi, Amir Hamzeh</creatorcontrib><creatorcontrib>Latif, Sarmad Dashti</creatorcontrib><creatorcontrib>Tripathi, Ravi Prakash</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parsaie, Abbas</au><au>Haghiabi, Amir Hamzeh</au><au>Latif, Sarmad Dashti</au><au>Tripathi, Ravi Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive modelling of piezometric head and seepage discharge in earth dam using soft computational models</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>28</volume><issue>43</issue><spage>60842</spage><epage>60856</epage><pages>60842-60856</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Predictions of pore pressure and seepage discharge are the most important parameters in the design of earth dams and assessing their safety during the operational period as well. In this research, soft computing models namely multi-layer perceptron neural network (MLPNN), support vector machine (SVM), multivariate adaptive regression splines (MARS), genetic programming (GP), M5 algorithm, and group method of data handling (GMDH) were used to predict the piezometric head in the core and the seepage discharge through the body of earth dam. For this purpose, the data recorded by the absolute instrument during the last 94 months of Shahid Kazemi Bukan Dam were used. The results showed that all of the applied models had a permissible level of accuracy in the prediction of the piezometric heads. The average error indices for the models in the training phase were R 2 = 0.957 and RMSE= 0.806 and in the testing phase were equal to R 2 = 0.949 and RMSE= 0.932, respectively. The performances of all models except the M5 and MARS in predicting seepage discharge are nearly identical; however, the best is the MARS, and the weakest is the M5 algorithm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11356-021-15029-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0417-3545</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2021-11, Vol.28 (43), p.60842-60856
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_2544881157
source ABI/INFORM Global (ProQuest); Springer Nature
subjects Algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Computer applications
Dam design
Dam engineering
Design parameters
Discharge
Earth and Environmental Science
Earth dams
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental science
Genetic algorithms
Group method of data handling
Mars
Mathematical models
Multilayers
Neural networks
Piezometric head
Pore pressure
Prediction models
Research Article
Seepage
Soft computing
Support vector machines
Waste Water Technology
Water Management
Water Pollution Control
title Predictive modelling of piezometric head and seepage discharge in earth dam using soft computational models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20modelling%20of%20piezometric%20head%20and%20seepage%20discharge%20in%20earth%20dam%20using%20soft%20computational%20models&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Parsaie,%20Abbas&rft.date=2021-11-01&rft.volume=28&rft.issue=43&rft.spage=60842&rft.epage=60856&rft.pages=60842-60856&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-021-15029-4&rft_dat=%3Cproquest_cross%3E2595779226%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-7c4fb388362b0098b1e26690f2be2fbdd9b015cc68cff98f4618fd5d866d16ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595779226&rft_id=info:pmid/&rfr_iscdi=true