Loading…

MicroRNAs in Apple-Derived Nanoparticles Modulate Intestinal Expression of Organic Anion-Transporting Peptide 2B1/ SLCO2B1 in Caco-2 Cells

Plant-derived nanoparticles exert cytoprotective effects on intestinal cells by delivering their cargo to intestinal tissues. We previously reported that apple-derived nanoparticles (APNPs) downregulate the mRNA of the human intestinal transporter organic anion-transporting peptide 2B1 (OATP2B1)/ an...

Full description

Saved in:
Bibliographic Details
Published in:Drug metabolism and disposition 2021-09, Vol.49 (9), p.803-809
Main Authors: Komori, Hisakazu, Fujita, Daichi, Shirasaki, Yuma, Zhu, Qiunan, Iwamoto, Yui, Nakanishi, Takeo, Nakajima, Miki, Tamai, Ikumi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant-derived nanoparticles exert cytoprotective effects on intestinal cells by delivering their cargo to intestinal tissues. We previously reported that apple-derived nanoparticles (APNPs) downregulate the mRNA of the human intestinal transporter organic anion-transporting peptide 2B1 (OATP2B1)/ and that the 3'-untranslated region (3'UTR) is required for the response to APNPs. Here, we investigated the involvement of microRNAs (miRNAs) in APNPs in suppressing OATP2B1 expression to demonstrate that APNP macromolecules directly interact with intestinal tissues. Using in silico analysis, seven apple miRNAs were predicted as candidate miRNAs that interact with the -3'UTR. The APNP-mediated decrease in luciferase activity of pGL3/ -3'UTR was abrogated by inhibitors of mdm-miR-160a-e, -7121a-c, or -7121d-h. Each miRNA mimic reduced the endogenous expression of mRNA in Caco-2 cells. The luciferase activity of the truncated pGL3/ -3'UTR, which contains approximately 200 bp around each miRNA recognition element (MRE), was decreased by the miR-7121d-h mimic but decreased little by the other mimics. APNP also reduced the luciferase activity of truncated pGL3/ -3'UTR containing an MRE for miR-7121d-h. Thus, we demonstrated that mdm-miR-7121d-h contributes to the APNP-mediated downregulation of intestinal OATP2B1. Accordingly, plant macromolecules, such as miRNAs, may directly interact with intestinal tissues via nanoparticles. SIGNIFICANCE STATEMENT: This study demonstrates that mdm-miR7121d-h contained in apple-derived nanoparticles downregulated the mRNA expression of by interacting with 3'-untranslated region directly and that mRNA might also be decreased by mdm-miR160a-e and -7121a-c indirectly. This finding that the specific apple-derived microRNAs influence human intestinal transporters provides a novel concept that macromolecules in foods directly interact with and affect the intestinal function of the host.
ISSN:0090-9556
1521-009X
DOI:10.1124/dmd.121.000380