Loading…

Human cell-based anti-inflammatory effects of rosiglitazone

Purpose The C-X-C motif chemokine ligand 10 (CXCL10) participates in diabetes and diabetic cardiomyopathy development from the early stages. Rosiglitazone (RGZ) exhibits anti-inflammatory properties and can target cardiomyocytes secreting CXCL10, under interferon (IFN)γ and tumor necrosis factor (TN...

Full description

Saved in:
Bibliographic Details
Published in:Journal of endocrinological investigation 2022, Vol.45 (1), p.105-114
Main Authors: Sottili, M., Filardi, T., Cantini, G., Cosmi, L., Morano, S., Luconi, M., Lenzi, A., Crescioli, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-1891bba859fee4817bdaaf40075aa61566f455fc8e55c1d1b48c11e723d93ae43
cites cdi_FETCH-LOGICAL-c375t-1891bba859fee4817bdaaf40075aa61566f455fc8e55c1d1b48c11e723d93ae43
container_end_page 114
container_issue 1
container_start_page 105
container_title Journal of endocrinological investigation
container_volume 45
creator Sottili, M.
Filardi, T.
Cantini, G.
Cosmi, L.
Morano, S.
Luconi, M.
Lenzi, A.
Crescioli, C.
description Purpose The C-X-C motif chemokine ligand 10 (CXCL10) participates in diabetes and diabetic cardiomyopathy development from the early stages. Rosiglitazone (RGZ) exhibits anti-inflammatory properties and can target cardiomyocytes secreting CXCL10, under interferon (IFN)γ and tumor necrosis factor (TNF)α challenge. Cardiomyocyte remodeling, CD4 + T cells and dendritic cells (DCs) significantly contribute to the inflammatory milieu underlying and promoting disease development. We aimed to study the effect of RGZ onto inflammation-induced secretion of CXCL10, IFNγ, TNFα, interleukin (IL)-6 and IL-8 by human CD4 + T and DCs, and onto IFNγ/TNFα-dependent signaling in human cardiomyocytes associated with chemokine release. Methods Cells maintained within an inflammatory-like microenvironment were exposed to RGZ at near therapy dose (5 µM). ELISA quantified cytokine secretion; qPCR measured mRNA expression; Western blot analyzed protein expression and activation; immunofluorescent analysis detected intracellular IFNγ/TNFα-dependent trafficking. Results In human CD4 + T cells and DCs, RGZ inhibited CXCL10 release likely with a transcriptional mechanism, and reduced TNFα only in CD4 + T cells. In human cardiomyocytes, RGZ impaired IFNγ/TNFα signal transduction, blocking the phosphorylation/nuclear translocation of signal transducer and activator of transcription 1 (Stat1) and nuclear factor-kB (NF-kB), in association with a significant decrease in CXCL10 expression, IL-6 and IL-8 release. Conclusion As the combination of Th1 biomarkers like CXCL10, IL-8, IL-6 with classical cardiovascular risk factors seems to improve the accuracy in predicting T2D and coronary events, future studies might be desirable to further investigate the anti-Th1 effect of RGZ.
doi_str_mv 10.1007/s40618-021-01621-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2545602353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617803437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1891bba859fee4817bdaaf40075aa61566f455fc8e55c1d1b48c11e723d93ae43</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJBYWgy-2Y1dMqAKKVIkFZstJzlWqfBQ7Gcqvx6XlQwwstiU_997dQ8g5sGtgTN0EwTLQlKVAGWTxlAdkDCplVHOdHf56j8hJCCvGuOJaHZMRF6CY0HpMbudDY9ukwLqmuQ1YJrbtK1q1rrZNY_vObxJ0Dos-JJ1LfBeqZV319r1r8ZQcOVsHPNvfE_L6cP8ym9PF8-PT7G5BC65kT0FPIc-tllOHKDSovLTWibiBtDYDmWVOSOkKjVIWUEIudAGAKuXllFsUfEKudrlr370NGHrTVGE7sW2xG4JJpZAZS7nkEb38g666wbdxOpNmoDTjIjqYkHRHFXGf4NGZta8a6zcGmNmqNTu1Jqo1n2qNjEUX--ghb7D8LvlyGQG-A0L8apfof3r_E_sBZSyCzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617803437</pqid></control><display><type>article</type><title>Human cell-based anti-inflammatory effects of rosiglitazone</title><source>Springer Nature</source><creator>Sottili, M. ; Filardi, T. ; Cantini, G. ; Cosmi, L. ; Morano, S. ; Luconi, M. ; Lenzi, A. ; Crescioli, C.</creator><creatorcontrib>Sottili, M. ; Filardi, T. ; Cantini, G. ; Cosmi, L. ; Morano, S. ; Luconi, M. ; Lenzi, A. ; Crescioli, C.</creatorcontrib><description>Purpose The C-X-C motif chemokine ligand 10 (CXCL10) participates in diabetes and diabetic cardiomyopathy development from the early stages. Rosiglitazone (RGZ) exhibits anti-inflammatory properties and can target cardiomyocytes secreting CXCL10, under interferon (IFN)γ and tumor necrosis factor (TNF)α challenge. Cardiomyocyte remodeling, CD4 + T cells and dendritic cells (DCs) significantly contribute to the inflammatory milieu underlying and promoting disease development. We aimed to study the effect of RGZ onto inflammation-induced secretion of CXCL10, IFNγ, TNFα, interleukin (IL)-6 and IL-8 by human CD4 + T and DCs, and onto IFNγ/TNFα-dependent signaling in human cardiomyocytes associated with chemokine release. Methods Cells maintained within an inflammatory-like microenvironment were exposed to RGZ at near therapy dose (5 µM). ELISA quantified cytokine secretion; qPCR measured mRNA expression; Western blot analyzed protein expression and activation; immunofluorescent analysis detected intracellular IFNγ/TNFα-dependent trafficking. Results In human CD4 + T cells and DCs, RGZ inhibited CXCL10 release likely with a transcriptional mechanism, and reduced TNFα only in CD4 + T cells. In human cardiomyocytes, RGZ impaired IFNγ/TNFα signal transduction, blocking the phosphorylation/nuclear translocation of signal transducer and activator of transcription 1 (Stat1) and nuclear factor-kB (NF-kB), in association with a significant decrease in CXCL10 expression, IL-6 and IL-8 release. Conclusion As the combination of Th1 biomarkers like CXCL10, IL-8, IL-6 with classical cardiovascular risk factors seems to improve the accuracy in predicting T2D and coronary events, future studies might be desirable to further investigate the anti-Th1 effect of RGZ.</description><identifier>ISSN: 1720-8386</identifier><identifier>ISSN: 0391-4097</identifier><identifier>EISSN: 1720-8386</identifier><identifier>DOI: 10.1007/s40618-021-01621-5</identifier><identifier>PMID: 34170488</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Anti-Inflammatory Agents - pharmacology ; Cardiomyocytes ; Cardiomyopathy ; Cardiovascular diseases ; CD4 antigen ; Cells, Cultured ; Chemokines ; CXCL10 protein ; Dendritic cells ; Developmental stages ; Diabetes mellitus ; Diabetes Mellitus, Type 2 - complications ; Diabetes Mellitus, Type 2 - drug therapy ; Diabetes Mellitus, Type 2 - metabolism ; Diabetic Cardiomyopathies - immunology ; Diabetic Cardiomyopathies - metabolism ; Endocrinology ; Enzyme-linked immunosorbent assay ; Gene expression ; Humans ; Hypoglycemic Agents - pharmacology ; Inflammation ; Inflammation - metabolism ; Interferon-gamma - metabolism ; Interleukin 6 ; Interleukin 8 ; Interleukin-8 - metabolism ; Internal Medicine ; Lymphocytes ; Lymphocytes T ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Microenvironments ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; NF-kappa B - metabolism ; NF-κB protein ; Nuclear transport ; Original Article ; Phosphorylation ; Prognosis ; Risk factors ; Rosiglitazone ; Rosiglitazone - pharmacology ; Signal transduction ; Stat1 protein ; T-Lymphocytes, Helper-Inducer - immunology ; Thiazolidinediones - pharmacology ; Transcription ; Tumor Necrosis Factor-alpha - metabolism ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α ; γ-Interferon</subject><ispartof>Journal of endocrinological investigation, 2022, Vol.45 (1), p.105-114</ispartof><rights>Italian Society of Endocrinology (SIE) 2021</rights><rights>2021. Italian Society of Endocrinology (SIE).</rights><rights>Italian Society of Endocrinology (SIE) 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1891bba859fee4817bdaaf40075aa61566f455fc8e55c1d1b48c11e723d93ae43</citedby><cites>FETCH-LOGICAL-c375t-1891bba859fee4817bdaaf40075aa61566f455fc8e55c1d1b48c11e723d93ae43</cites><orcidid>0000-0001-5186-064X ; 0000-0002-9159-9199 ; 0000-0002-8150-8177 ; 0000-0003-3339-3114 ; 0000-0002-4277-7278 ; 0000-0002-7711-0465 ; 0000-0001-5002-0753 ; 0000-0002-8156-9543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34170488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sottili, M.</creatorcontrib><creatorcontrib>Filardi, T.</creatorcontrib><creatorcontrib>Cantini, G.</creatorcontrib><creatorcontrib>Cosmi, L.</creatorcontrib><creatorcontrib>Morano, S.</creatorcontrib><creatorcontrib>Luconi, M.</creatorcontrib><creatorcontrib>Lenzi, A.</creatorcontrib><creatorcontrib>Crescioli, C.</creatorcontrib><title>Human cell-based anti-inflammatory effects of rosiglitazone</title><title>Journal of endocrinological investigation</title><addtitle>J Endocrinol Invest</addtitle><addtitle>J Endocrinol Invest</addtitle><description>Purpose The C-X-C motif chemokine ligand 10 (CXCL10) participates in diabetes and diabetic cardiomyopathy development from the early stages. Rosiglitazone (RGZ) exhibits anti-inflammatory properties and can target cardiomyocytes secreting CXCL10, under interferon (IFN)γ and tumor necrosis factor (TNF)α challenge. Cardiomyocyte remodeling, CD4 + T cells and dendritic cells (DCs) significantly contribute to the inflammatory milieu underlying and promoting disease development. We aimed to study the effect of RGZ onto inflammation-induced secretion of CXCL10, IFNγ, TNFα, interleukin (IL)-6 and IL-8 by human CD4 + T and DCs, and onto IFNγ/TNFα-dependent signaling in human cardiomyocytes associated with chemokine release. Methods Cells maintained within an inflammatory-like microenvironment were exposed to RGZ at near therapy dose (5 µM). ELISA quantified cytokine secretion; qPCR measured mRNA expression; Western blot analyzed protein expression and activation; immunofluorescent analysis detected intracellular IFNγ/TNFα-dependent trafficking. Results In human CD4 + T cells and DCs, RGZ inhibited CXCL10 release likely with a transcriptional mechanism, and reduced TNFα only in CD4 + T cells. In human cardiomyocytes, RGZ impaired IFNγ/TNFα signal transduction, blocking the phosphorylation/nuclear translocation of signal transducer and activator of transcription 1 (Stat1) and nuclear factor-kB (NF-kB), in association with a significant decrease in CXCL10 expression, IL-6 and IL-8 release. Conclusion As the combination of Th1 biomarkers like CXCL10, IL-8, IL-6 with classical cardiovascular risk factors seems to improve the accuracy in predicting T2D and coronary events, future studies might be desirable to further investigate the anti-Th1 effect of RGZ.</description><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Cardiomyocytes</subject><subject>Cardiomyopathy</subject><subject>Cardiovascular diseases</subject><subject>CD4 antigen</subject><subject>Cells, Cultured</subject><subject>Chemokines</subject><subject>CXCL10 protein</subject><subject>Dendritic cells</subject><subject>Developmental stages</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Type 2 - complications</subject><subject>Diabetes Mellitus, Type 2 - drug therapy</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetic Cardiomyopathies - immunology</subject><subject>Diabetic Cardiomyopathies - metabolism</subject><subject>Endocrinology</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Inflammation</subject><subject>Inflammation - metabolism</subject><subject>Interferon-gamma - metabolism</subject><subject>Interleukin 6</subject><subject>Interleukin 8</subject><subject>Interleukin-8 - metabolism</subject><subject>Internal Medicine</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Microenvironments</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Nuclear transport</subject><subject>Original Article</subject><subject>Phosphorylation</subject><subject>Prognosis</subject><subject>Risk factors</subject><subject>Rosiglitazone</subject><subject>Rosiglitazone - pharmacology</subject><subject>Signal transduction</subject><subject>Stat1 protein</subject><subject>T-Lymphocytes, Helper-Inducer - immunology</subject><subject>Thiazolidinediones - pharmacology</subject><subject>Transcription</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><subject>γ-Interferon</subject><issn>1720-8386</issn><issn>0391-4097</issn><issn>1720-8386</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJBYWgy-2Y1dMqAKKVIkFZstJzlWqfBQ7Gcqvx6XlQwwstiU_997dQ8g5sGtgTN0EwTLQlKVAGWTxlAdkDCplVHOdHf56j8hJCCvGuOJaHZMRF6CY0HpMbudDY9ukwLqmuQ1YJrbtK1q1rrZNY_vObxJ0Dos-JJ1LfBeqZV319r1r8ZQcOVsHPNvfE_L6cP8ym9PF8-PT7G5BC65kT0FPIc-tllOHKDSovLTWibiBtDYDmWVOSOkKjVIWUEIudAGAKuXllFsUfEKudrlr370NGHrTVGE7sW2xG4JJpZAZS7nkEb38g666wbdxOpNmoDTjIjqYkHRHFXGf4NGZta8a6zcGmNmqNTu1Jqo1n2qNjEUX--ghb7D8LvlyGQG-A0L8apfof3r_E_sBZSyCzw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Sottili, M.</creator><creator>Filardi, T.</creator><creator>Cantini, G.</creator><creator>Cosmi, L.</creator><creator>Morano, S.</creator><creator>Luconi, M.</creator><creator>Lenzi, A.</creator><creator>Crescioli, C.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5186-064X</orcidid><orcidid>https://orcid.org/0000-0002-9159-9199</orcidid><orcidid>https://orcid.org/0000-0002-8150-8177</orcidid><orcidid>https://orcid.org/0000-0003-3339-3114</orcidid><orcidid>https://orcid.org/0000-0002-4277-7278</orcidid><orcidid>https://orcid.org/0000-0002-7711-0465</orcidid><orcidid>https://orcid.org/0000-0001-5002-0753</orcidid><orcidid>https://orcid.org/0000-0002-8156-9543</orcidid></search><sort><creationdate>2022</creationdate><title>Human cell-based anti-inflammatory effects of rosiglitazone</title><author>Sottili, M. ; Filardi, T. ; Cantini, G. ; Cosmi, L. ; Morano, S. ; Luconi, M. ; Lenzi, A. ; Crescioli, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1891bba859fee4817bdaaf40075aa61566f455fc8e55c1d1b48c11e723d93ae43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Cardiomyocytes</topic><topic>Cardiomyopathy</topic><topic>Cardiovascular diseases</topic><topic>CD4 antigen</topic><topic>Cells, Cultured</topic><topic>Chemokines</topic><topic>CXCL10 protein</topic><topic>Dendritic cells</topic><topic>Developmental stages</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Type 2 - complications</topic><topic>Diabetes Mellitus, Type 2 - drug therapy</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetic Cardiomyopathies - immunology</topic><topic>Diabetic Cardiomyopathies - metabolism</topic><topic>Endocrinology</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Inflammation</topic><topic>Inflammation - metabolism</topic><topic>Interferon-gamma - metabolism</topic><topic>Interleukin 6</topic><topic>Interleukin 8</topic><topic>Interleukin-8 - metabolism</topic><topic>Internal Medicine</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Microenvironments</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Nuclear transport</topic><topic>Original Article</topic><topic>Phosphorylation</topic><topic>Prognosis</topic><topic>Risk factors</topic><topic>Rosiglitazone</topic><topic>Rosiglitazone - pharmacology</topic><topic>Signal transduction</topic><topic>Stat1 protein</topic><topic>T-Lymphocytes, Helper-Inducer - immunology</topic><topic>Thiazolidinediones - pharmacology</topic><topic>Transcription</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sottili, M.</creatorcontrib><creatorcontrib>Filardi, T.</creatorcontrib><creatorcontrib>Cantini, G.</creatorcontrib><creatorcontrib>Cosmi, L.</creatorcontrib><creatorcontrib>Morano, S.</creatorcontrib><creatorcontrib>Luconi, M.</creatorcontrib><creatorcontrib>Lenzi, A.</creatorcontrib><creatorcontrib>Crescioli, C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of endocrinological investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sottili, M.</au><au>Filardi, T.</au><au>Cantini, G.</au><au>Cosmi, L.</au><au>Morano, S.</au><au>Luconi, M.</au><au>Lenzi, A.</au><au>Crescioli, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human cell-based anti-inflammatory effects of rosiglitazone</atitle><jtitle>Journal of endocrinological investigation</jtitle><stitle>J Endocrinol Invest</stitle><addtitle>J Endocrinol Invest</addtitle><date>2022</date><risdate>2022</risdate><volume>45</volume><issue>1</issue><spage>105</spage><epage>114</epage><pages>105-114</pages><issn>1720-8386</issn><issn>0391-4097</issn><eissn>1720-8386</eissn><abstract>Purpose The C-X-C motif chemokine ligand 10 (CXCL10) participates in diabetes and diabetic cardiomyopathy development from the early stages. Rosiglitazone (RGZ) exhibits anti-inflammatory properties and can target cardiomyocytes secreting CXCL10, under interferon (IFN)γ and tumor necrosis factor (TNF)α challenge. Cardiomyocyte remodeling, CD4 + T cells and dendritic cells (DCs) significantly contribute to the inflammatory milieu underlying and promoting disease development. We aimed to study the effect of RGZ onto inflammation-induced secretion of CXCL10, IFNγ, TNFα, interleukin (IL)-6 and IL-8 by human CD4 + T and DCs, and onto IFNγ/TNFα-dependent signaling in human cardiomyocytes associated with chemokine release. Methods Cells maintained within an inflammatory-like microenvironment were exposed to RGZ at near therapy dose (5 µM). ELISA quantified cytokine secretion; qPCR measured mRNA expression; Western blot analyzed protein expression and activation; immunofluorescent analysis detected intracellular IFNγ/TNFα-dependent trafficking. Results In human CD4 + T cells and DCs, RGZ inhibited CXCL10 release likely with a transcriptional mechanism, and reduced TNFα only in CD4 + T cells. In human cardiomyocytes, RGZ impaired IFNγ/TNFα signal transduction, blocking the phosphorylation/nuclear translocation of signal transducer and activator of transcription 1 (Stat1) and nuclear factor-kB (NF-kB), in association with a significant decrease in CXCL10 expression, IL-6 and IL-8 release. Conclusion As the combination of Th1 biomarkers like CXCL10, IL-8, IL-6 with classical cardiovascular risk factors seems to improve the accuracy in predicting T2D and coronary events, future studies might be desirable to further investigate the anti-Th1 effect of RGZ.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>34170488</pmid><doi>10.1007/s40618-021-01621-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5186-064X</orcidid><orcidid>https://orcid.org/0000-0002-9159-9199</orcidid><orcidid>https://orcid.org/0000-0002-8150-8177</orcidid><orcidid>https://orcid.org/0000-0003-3339-3114</orcidid><orcidid>https://orcid.org/0000-0002-4277-7278</orcidid><orcidid>https://orcid.org/0000-0002-7711-0465</orcidid><orcidid>https://orcid.org/0000-0001-5002-0753</orcidid><orcidid>https://orcid.org/0000-0002-8156-9543</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1720-8386
ispartof Journal of endocrinological investigation, 2022, Vol.45 (1), p.105-114
issn 1720-8386
0391-4097
1720-8386
language eng
recordid cdi_proquest_miscellaneous_2545602353
source Springer Nature
subjects Anti-Inflammatory Agents - pharmacology
Cardiomyocytes
Cardiomyopathy
Cardiovascular diseases
CD4 antigen
Cells, Cultured
Chemokines
CXCL10 protein
Dendritic cells
Developmental stages
Diabetes mellitus
Diabetes Mellitus, Type 2 - complications
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - metabolism
Diabetic Cardiomyopathies - immunology
Diabetic Cardiomyopathies - metabolism
Endocrinology
Enzyme-linked immunosorbent assay
Gene expression
Humans
Hypoglycemic Agents - pharmacology
Inflammation
Inflammation - metabolism
Interferon-gamma - metabolism
Interleukin 6
Interleukin 8
Interleukin-8 - metabolism
Internal Medicine
Lymphocytes
Lymphocytes T
Medicine
Medicine & Public Health
Metabolic Diseases
Microenvironments
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
NF-kappa B - metabolism
NF-κB protein
Nuclear transport
Original Article
Phosphorylation
Prognosis
Risk factors
Rosiglitazone
Rosiglitazone - pharmacology
Signal transduction
Stat1 protein
T-Lymphocytes, Helper-Inducer - immunology
Thiazolidinediones - pharmacology
Transcription
Tumor Necrosis Factor-alpha - metabolism
Tumor necrosis factor-TNF
Tumor necrosis factor-α
γ-Interferon
title Human cell-based anti-inflammatory effects of rosiglitazone
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20cell-based%20anti-inflammatory%20effects%20of%20rosiglitazone&rft.jtitle=Journal%20of%20endocrinological%20investigation&rft.au=Sottili,%20M.&rft.date=2022&rft.volume=45&rft.issue=1&rft.spage=105&rft.epage=114&rft.pages=105-114&rft.issn=1720-8386&rft.eissn=1720-8386&rft_id=info:doi/10.1007/s40618-021-01621-5&rft_dat=%3Cproquest_cross%3E2617803437%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-1891bba859fee4817bdaaf40075aa61566f455fc8e55c1d1b48c11e723d93ae43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2617803437&rft_id=info:pmid/34170488&rfr_iscdi=true