Loading…
Cell–surface interactions on gold‐coated polydimethylsiloxane nanocomposite structures: Localized laser heating on cell viability
This article presents the results of cell–surface interactions on polydimethylsiloxane (PDMS)‐based substrates coated with nanoscale gold (Au) thin films. The surfaces of PDMS and PDMS–magnetite (MNP)‐based substrates were treated with UV‐ozone, prior to thermal vapor deposition (sputter‐coated) of...
Saved in:
Published in: | Journal of biomedical materials research. Part A 2021-12, Vol.109 (12), p.2611-2624 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article presents the results of cell–surface interactions on polydimethylsiloxane (PDMS)‐based substrates coated with nanoscale gold (Au) thin films. The surfaces of PDMS and PDMS–magnetite (MNP)‐based substrates were treated with UV‐ozone, prior to thermal vapor deposition (sputter‐coated) of thin films of titanium (Ti) onto the substrates to improve the adhesion of Au coatings. The thin layer of Ti was thermally evaporated to improve interfacial adhesion, which was enhanced by a 40‐nm thick film microwrinkled/buckled wavy layer of Au, that was coated to enhance cell–surface interactions and protein absorption. Cell–surface interactions were studied on the hybrid surfaces using a combination of optical and fluorescence microscopy. Consequently, cell proliferation and surface cytotoxicity (of the sputter‐coated PDMS surfaces) were elucidated by characterizing the metabolic activity in the presence of breast cancer and normal breast cells. The photothermal conversion efficiency associated with laser–materials interactions with the PDMS/PDMS–magnetite‐based composites was shown to have an optimum efficiency of ~31.8%. The implications of the results are discussed for potential applications of PDMS nanocomposites in implantable biomedical devices. |
---|---|
ISSN: | 1549-3296 1552-4965 |
DOI: | 10.1002/jbm.a.37254 |