Loading…
A study of logspline density estimation
A method of estimating an unknown density function ƒ based on sample data is studied. Our approach is to use maximum likelihood etimation to estimate log(ƒ) by a function s from a space of cubic splines that have a finite number of prespecified knots and are linear in the tails. The knots are placed...
Saved in:
Published in: | Computational statistics & data analysis 1991, Vol.12 (3), p.327-347 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c482t-5906f14d2820a80162458df2e684482b8462e99b4d540006f56d455e1961f1eb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c482t-5906f14d2820a80162458df2e684482b8462e99b4d540006f56d455e1961f1eb3 |
container_end_page | 347 |
container_issue | 3 |
container_start_page | 327 |
container_title | Computational statistics & data analysis |
container_volume | 12 |
creator | Kooperberg, Charles Stone, Charles J. |
description | A method of estimating an unknown density function ƒ based on sample data is studied. Our approach is to use maximum likelihood etimation to estimate log(ƒ) by a function
s from a space of cubic splines that have a finite number of prespecified knots and are linear in the tails. The knots are placed at selected order statistics of the sample data. The number of knots can be determined either by a simple rule or by minimizing a variant of
AIC. Examples using both simulated and real data show that the method works well both in obtaining smooth estimates and in picking up small details. The method is fully automatic and can easily be extended to yield estimates and confidence bounds for quantiles. |
doi_str_mv | 10.1016/0167-9473(91)90115-I |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25463660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016794739190115I</els_id><sourcerecordid>25463660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-5906f14d2820a80162458df2e684482b8462e99b4d540006f56d455e1961f1eb3</originalsourceid><addsrcrecordid>eNp9UMlOwzAUtBBIlOUPOOSAWA4B77EvSFXFUoTEBc6Wa7-AUZoEO0Xq3-PQqkcO4-fDzLx5g9AZwTcEE3mbUZWaV-xKk2uNCRHlfA9NiKpoWTFB99FkRzlERyl9YYwpr9QEXU6LNKz8uujqouk-Ut-EFgoPbQrDuoA0hKUdQteeoIPaNglOt_MYvT_cv82eypfXx_ls-lI6ruhQCo1lTbinimKr8lLKhfI1Bal4JiwUlxS0XnAveM4gayE9FwKIlqQmsGDH6GLj28fue5X3m2VIDprGttCtkqGCSyYlzkS-IbrYpRShNn3MWePaEGzGVsx4shlPNpqYv1bMPMueN7IIPbidBgBc8ra15scwS2h-1uNHZymzIYNl9OOklWG8Mp_DMpudb8Pa5GxTR9u6kHamgipcMZppdxsa5OJ-AkSTXIDWgQ8R3GB8F_4P_QtryYwl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25463660</pqid></control><display><type>article</type><title>A study of logspline density estimation</title><source>ScienceDirect: Mathematics Backfile</source><source>ScienceDirect Journals</source><source>Backfile Package - Decision Sciences [YDT]</source><creator>Kooperberg, Charles ; Stone, Charles J.</creator><creatorcontrib>Kooperberg, Charles ; Stone, Charles J.</creatorcontrib><description>A method of estimating an unknown density function ƒ based on sample data is studied. Our approach is to use maximum likelihood etimation to estimate log(ƒ) by a function
s from a space of cubic splines that have a finite number of prespecified knots and are linear in the tails. The knots are placed at selected order statistics of the sample data. The number of knots can be determined either by a simple rule or by minimizing a variant of
AIC. Examples using both simulated and real data show that the method works well both in obtaining smooth estimates and in picking up small details. The method is fully automatic and can easily be extended to yield estimates and confidence bounds for quantiles.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/0167-9473(91)90115-I</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>AIC ; Density estimation ; Exact sciences and technology ; Exponential family ; Mathematics ; Probability and statistics ; Sciences and techniques of general use ; Splines ; Statistics ; Stepwise knot deletion ; Transformations</subject><ispartof>Computational statistics & data analysis, 1991, Vol.12 (3), p.327-347</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-5906f14d2820a80162458df2e684482b8462e99b4d540006f56d455e1961f1eb3</citedby><cites>FETCH-LOGICAL-c482t-5906f14d2820a80162458df2e684482b8462e99b4d540006f56d455e1961f1eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/016794739190115I$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3416,3427,3551,4010,27900,27901,27902,45948,45967,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5280732$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a12_3ay_3a1991_3ai_3a3_3ap_3a327-347.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Kooperberg, Charles</creatorcontrib><creatorcontrib>Stone, Charles J.</creatorcontrib><title>A study of logspline density estimation</title><title>Computational statistics & data analysis</title><description>A method of estimating an unknown density function ƒ based on sample data is studied. Our approach is to use maximum likelihood etimation to estimate log(ƒ) by a function
s from a space of cubic splines that have a finite number of prespecified knots and are linear in the tails. The knots are placed at selected order statistics of the sample data. The number of knots can be determined either by a simple rule or by minimizing a variant of
AIC. Examples using both simulated and real data show that the method works well both in obtaining smooth estimates and in picking up small details. The method is fully automatic and can easily be extended to yield estimates and confidence bounds for quantiles.</description><subject>AIC</subject><subject>Density estimation</subject><subject>Exact sciences and technology</subject><subject>Exponential family</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Splines</subject><subject>Statistics</subject><subject>Stepwise knot deletion</subject><subject>Transformations</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAUtBBIlOUPOOSAWA4B77EvSFXFUoTEBc6Wa7-AUZoEO0Xq3-PQqkcO4-fDzLx5g9AZwTcEE3mbUZWaV-xKk2uNCRHlfA9NiKpoWTFB99FkRzlERyl9YYwpr9QEXU6LNKz8uujqouk-Ut-EFgoPbQrDuoA0hKUdQteeoIPaNglOt_MYvT_cv82eypfXx_ls-lI6ruhQCo1lTbinimKr8lLKhfI1Bal4JiwUlxS0XnAveM4gayE9FwKIlqQmsGDH6GLj28fue5X3m2VIDprGttCtkqGCSyYlzkS-IbrYpRShNn3MWePaEGzGVsx4shlPNpqYv1bMPMueN7IIPbidBgBc8ra15scwS2h-1uNHZymzIYNl9OOklWG8Mp_DMpudb8Pa5GxTR9u6kHamgipcMZppdxsa5OJ-AkSTXIDWgQ8R3GB8F_4P_QtryYwl</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Kooperberg, Charles</creator><creator>Stone, Charles J.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1991</creationdate><title>A study of logspline density estimation</title><author>Kooperberg, Charles ; Stone, Charles J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-5906f14d2820a80162458df2e684482b8462e99b4d540006f56d455e1961f1eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>AIC</topic><topic>Density estimation</topic><topic>Exact sciences and technology</topic><topic>Exponential family</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Splines</topic><topic>Statistics</topic><topic>Stepwise knot deletion</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kooperberg, Charles</creatorcontrib><creatorcontrib>Stone, Charles J.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kooperberg, Charles</au><au>Stone, Charles J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study of logspline density estimation</atitle><jtitle>Computational statistics & data analysis</jtitle><date>1991</date><risdate>1991</risdate><volume>12</volume><issue>3</issue><spage>327</spage><epage>347</epage><pages>327-347</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>A method of estimating an unknown density function ƒ based on sample data is studied. Our approach is to use maximum likelihood etimation to estimate log(ƒ) by a function
s from a space of cubic splines that have a finite number of prespecified knots and are linear in the tails. The knots are placed at selected order statistics of the sample data. The number of knots can be determined either by a simple rule or by minimizing a variant of
AIC. Examples using both simulated and real data show that the method works well both in obtaining smooth estimates and in picking up small details. The method is fully automatic and can easily be extended to yield estimates and confidence bounds for quantiles.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0167-9473(91)90115-I</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 1991, Vol.12 (3), p.327-347 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_proquest_miscellaneous_25463660 |
source | ScienceDirect: Mathematics Backfile; ScienceDirect Journals; Backfile Package - Decision Sciences [YDT] |
subjects | AIC Density estimation Exact sciences and technology Exponential family Mathematics Probability and statistics Sciences and techniques of general use Splines Statistics Stepwise knot deletion Transformations |
title | A study of logspline density estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20of%20logspline%20density%20estimation&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Kooperberg,%20Charles&rft.date=1991&rft.volume=12&rft.issue=3&rft.spage=327&rft.epage=347&rft.pages=327-347&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/0167-9473(91)90115-I&rft_dat=%3Cproquest_cross%3E25463660%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-5906f14d2820a80162458df2e684482b8462e99b4d540006f56d455e1961f1eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25463660&rft_id=info:pmid/&rfr_iscdi=true |