Loading…

A study of logspline density estimation

A method of estimating an unknown density function ƒ based on sample data is studied. Our approach is to use maximum likelihood etimation to estimate log(ƒ) by a function s from a space of cubic splines that have a finite number of prespecified knots and are linear in the tails. The knots are placed...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis 1991, Vol.12 (3), p.327-347
Main Authors: Kooperberg, Charles, Stone, Charles J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c482t-5906f14d2820a80162458df2e684482b8462e99b4d540006f56d455e1961f1eb3
cites cdi_FETCH-LOGICAL-c482t-5906f14d2820a80162458df2e684482b8462e99b4d540006f56d455e1961f1eb3
container_end_page 347
container_issue 3
container_start_page 327
container_title Computational statistics & data analysis
container_volume 12
creator Kooperberg, Charles
Stone, Charles J.
description A method of estimating an unknown density function ƒ based on sample data is studied. Our approach is to use maximum likelihood etimation to estimate log(ƒ) by a function s from a space of cubic splines that have a finite number of prespecified knots and are linear in the tails. The knots are placed at selected order statistics of the sample data. The number of knots can be determined either by a simple rule or by minimizing a variant of AIC. Examples using both simulated and real data show that the method works well both in obtaining smooth estimates and in picking up small details. The method is fully automatic and can easily be extended to yield estimates and confidence bounds for quantiles.
doi_str_mv 10.1016/0167-9473(91)90115-I
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25463660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016794739190115I</els_id><sourcerecordid>25463660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-5906f14d2820a80162458df2e684482b8462e99b4d540006f56d455e1961f1eb3</originalsourceid><addsrcrecordid>eNp9UMlOwzAUtBBIlOUPOOSAWA4B77EvSFXFUoTEBc6Wa7-AUZoEO0Xq3-PQqkcO4-fDzLx5g9AZwTcEE3mbUZWaV-xKk2uNCRHlfA9NiKpoWTFB99FkRzlERyl9YYwpr9QEXU6LNKz8uujqouk-Ut-EFgoPbQrDuoA0hKUdQteeoIPaNglOt_MYvT_cv82eypfXx_ls-lI6ruhQCo1lTbinimKr8lLKhfI1Bal4JiwUlxS0XnAveM4gayE9FwKIlqQmsGDH6GLj28fue5X3m2VIDprGttCtkqGCSyYlzkS-IbrYpRShNn3MWePaEGzGVsx4shlPNpqYv1bMPMueN7IIPbidBgBc8ra15scwS2h-1uNHZymzIYNl9OOklWG8Mp_DMpudb8Pa5GxTR9u6kHamgipcMZppdxsa5OJ-AkSTXIDWgQ8R3GB8F_4P_QtryYwl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25463660</pqid></control><display><type>article</type><title>A study of logspline density estimation</title><source>ScienceDirect: Mathematics Backfile</source><source>ScienceDirect Journals</source><source>Backfile Package - Decision Sciences [YDT]</source><creator>Kooperberg, Charles ; Stone, Charles J.</creator><creatorcontrib>Kooperberg, Charles ; Stone, Charles J.</creatorcontrib><description>A method of estimating an unknown density function ƒ based on sample data is studied. Our approach is to use maximum likelihood etimation to estimate log(ƒ) by a function s from a space of cubic splines that have a finite number of prespecified knots and are linear in the tails. The knots are placed at selected order statistics of the sample data. The number of knots can be determined either by a simple rule or by minimizing a variant of AIC. Examples using both simulated and real data show that the method works well both in obtaining smooth estimates and in picking up small details. The method is fully automatic and can easily be extended to yield estimates and confidence bounds for quantiles.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/0167-9473(91)90115-I</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>AIC ; Density estimation ; Exact sciences and technology ; Exponential family ; Mathematics ; Probability and statistics ; Sciences and techniques of general use ; Splines ; Statistics ; Stepwise knot deletion ; Transformations</subject><ispartof>Computational statistics &amp; data analysis, 1991, Vol.12 (3), p.327-347</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-5906f14d2820a80162458df2e684482b8462e99b4d540006f56d455e1961f1eb3</citedby><cites>FETCH-LOGICAL-c482t-5906f14d2820a80162458df2e684482b8462e99b4d540006f56d455e1961f1eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/016794739190115I$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3416,3427,3551,4010,27900,27901,27902,45948,45967,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5280732$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a12_3ay_3a1991_3ai_3a3_3ap_3a327-347.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Kooperberg, Charles</creatorcontrib><creatorcontrib>Stone, Charles J.</creatorcontrib><title>A study of logspline density estimation</title><title>Computational statistics &amp; data analysis</title><description>A method of estimating an unknown density function ƒ based on sample data is studied. Our approach is to use maximum likelihood etimation to estimate log(ƒ) by a function s from a space of cubic splines that have a finite number of prespecified knots and are linear in the tails. The knots are placed at selected order statistics of the sample data. The number of knots can be determined either by a simple rule or by minimizing a variant of AIC. Examples using both simulated and real data show that the method works well both in obtaining smooth estimates and in picking up small details. The method is fully automatic and can easily be extended to yield estimates and confidence bounds for quantiles.</description><subject>AIC</subject><subject>Density estimation</subject><subject>Exact sciences and technology</subject><subject>Exponential family</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Splines</subject><subject>Statistics</subject><subject>Stepwise knot deletion</subject><subject>Transformations</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAUtBBIlOUPOOSAWA4B77EvSFXFUoTEBc6Wa7-AUZoEO0Xq3-PQqkcO4-fDzLx5g9AZwTcEE3mbUZWaV-xKk2uNCRHlfA9NiKpoWTFB99FkRzlERyl9YYwpr9QEXU6LNKz8uujqouk-Ut-EFgoPbQrDuoA0hKUdQteeoIPaNglOt_MYvT_cv82eypfXx_ls-lI6ruhQCo1lTbinimKr8lLKhfI1Bal4JiwUlxS0XnAveM4gayE9FwKIlqQmsGDH6GLj28fue5X3m2VIDprGttCtkqGCSyYlzkS-IbrYpRShNn3MWePaEGzGVsx4shlPNpqYv1bMPMueN7IIPbidBgBc8ra15scwS2h-1uNHZymzIYNl9OOklWG8Mp_DMpudb8Pa5GxTR9u6kHamgipcMZppdxsa5OJ-AkSTXIDWgQ8R3GB8F_4P_QtryYwl</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Kooperberg, Charles</creator><creator>Stone, Charles J.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1991</creationdate><title>A study of logspline density estimation</title><author>Kooperberg, Charles ; Stone, Charles J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-5906f14d2820a80162458df2e684482b8462e99b4d540006f56d455e1961f1eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>AIC</topic><topic>Density estimation</topic><topic>Exact sciences and technology</topic><topic>Exponential family</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Splines</topic><topic>Statistics</topic><topic>Stepwise knot deletion</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kooperberg, Charles</creatorcontrib><creatorcontrib>Stone, Charles J.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kooperberg, Charles</au><au>Stone, Charles J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study of logspline density estimation</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>1991</date><risdate>1991</risdate><volume>12</volume><issue>3</issue><spage>327</spage><epage>347</epage><pages>327-347</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>A method of estimating an unknown density function ƒ based on sample data is studied. Our approach is to use maximum likelihood etimation to estimate log(ƒ) by a function s from a space of cubic splines that have a finite number of prespecified knots and are linear in the tails. The knots are placed at selected order statistics of the sample data. The number of knots can be determined either by a simple rule or by minimizing a variant of AIC. Examples using both simulated and real data show that the method works well both in obtaining smooth estimates and in picking up small details. The method is fully automatic and can easily be extended to yield estimates and confidence bounds for quantiles.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0167-9473(91)90115-I</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 1991, Vol.12 (3), p.327-347
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_25463660
source ScienceDirect: Mathematics Backfile; ScienceDirect Journals; Backfile Package - Decision Sciences [YDT]
subjects AIC
Density estimation
Exact sciences and technology
Exponential family
Mathematics
Probability and statistics
Sciences and techniques of general use
Splines
Statistics
Stepwise knot deletion
Transformations
title A study of logspline density estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20of%20logspline%20density%20estimation&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Kooperberg,%20Charles&rft.date=1991&rft.volume=12&rft.issue=3&rft.spage=327&rft.epage=347&rft.pages=327-347&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/0167-9473(91)90115-I&rft_dat=%3Cproquest_cross%3E25463660%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-5906f14d2820a80162458df2e684482b8462e99b4d540006f56d455e1961f1eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25463660&rft_id=info:pmid/&rfr_iscdi=true