Loading…
Electrochemical Sensing and Characterization of Aerobic Marine Bacterial Biofilms on Gold Electrode Surfaces
Reliable and accurate in situ sensors capable of detecting and quantifying troublesome marine biofilms on metallic surfaces are increasingly necessary. A 0.2 mm diameter gold electrochemical sensor was fully characterized using cyclic voltammetry in abiotic and biotic artificial seawater media withi...
Saved in:
Published in: | ACS applied materials & interfaces 2021-07, Vol.13 (27), p.31393-31405 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reliable and accurate in situ sensors capable of detecting and quantifying troublesome marine biofilms on metallic surfaces are increasingly necessary. A 0.2 mm diameter gold electrochemical sensor was fully characterized using cyclic voltammetry in abiotic and biotic artificial seawater media within a continuous culture flow cell to detect the growth and development of an aerobic Pseudoalteromonas sp. biofilm. Deconvolution of the abiotic and biotic responses enable the constituent extracellular electron transfer and biofilm responses to be resolved. Differentiation of enhanced oxygen reduction kinetics within the aerobic bacterial biofilm is linked to enzyme and redox mediator activities. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c02669 |