Loading…
Panaxytriol Inhibits Lipopolysaccharide-Induced Microglia Activation in Brain Inflammation in Vivo
Brain inflammation is a pathological characteristic of neurodegenerative diseases. In this condition, excessively activated microglia elevate proinflammatory mediator levels. We previously reported that panaxytriol inhibited lipopolysaccharide (LPS)-induced microglia activation in vitro. However, th...
Saved in:
Published in: | Biological & pharmaceutical bulletin 2021/07/01, Vol.44(7), pp.1024-1028 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Brain inflammation is a pathological characteristic of neurodegenerative diseases. In this condition, excessively activated microglia elevate proinflammatory mediator levels. We previously reported that panaxytriol inhibited lipopolysaccharide (LPS)-induced microglia activation in vitro. However, the effects of panaxytriol on microglia activation in vivo require confirmation. In the present study, we found that panaxytriol suppressed both microglia and astrocyte activation by injected LPS intracerebrally to mice with LPS-induced brain inflammation. Panaxytriol was more effective on microglia than astrocytes. Moreover, panaxytriol tended to reduce LPS-induced spontaneous motor activity dysfunction. These results suggested that panaxytriol could improve brain health by suppressing microglia activation in neurodegenerative diseases. |
---|---|
ISSN: | 0918-6158 1347-5215 |
DOI: | 10.1248/bpb.b21-00288 |