Loading…
Stereo correspondence through feature grouping and maximal cliques
The authors propose a method for solving the stereo correspondence problem. The method consists of extracting local image structures and matching similar such structures between two images. Linear edge segments are extracted from both the left and right images. Each segment is characterized by its p...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 1989-11, Vol.11 (11), p.1168-1180 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-b9ecf55e019419775e547db5634ecde8d63a3a74775b1192300e77f3cab639cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-b9ecf55e019419775e547db5634ecde8d63a3a74775b1192300e77f3cab639cc3 |
container_end_page | 1180 |
container_issue | 11 |
container_start_page | 1168 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 11 |
creator | Horaud, R. Skordas, T. |
description | The authors propose a method for solving the stereo correspondence problem. The method consists of extracting local image structures and matching similar such structures between two images. Linear edge segments are extracted from both the left and right images. Each segment is characterized by its position and orientation in the image as well as its relationships with the nearby segments. A relational graph is thus built from each image. For each segment in one image as set of potential assignments is represented as a set of nodes in a correspondence graph. Arcs in the graph represent compatible assignments established on the basis of segment relationships. Stereo matching becomes equivalent to searching for sets of mutually compatible nodes in this graph. Sets are found by looking for maximal cliques. The maximal clique best suited to represent a stereo correspondence is selected using a benefit function. Numerous results obtained with this method are shown.< > |
doi_str_mv | 10.1109/34.42855 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_25476539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>42855</ieee_id><sourcerecordid>28663481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-b9ecf55e019419775e547db5634ecde8d63a3a74775b1192300e77f3cab639cc3</originalsourceid><addsrcrecordid>eNqNkMFLwzAYxYMoOKfg1VsPIoJ0Jk3SJkcd6oSBB_Uc0vTrFumamrSi_72ZHTt7-vh4P957PITOCZ4RguUtZTOWCc4P0IRIKlPKqTxEE0zyLBUiE8foJIQPjAnjmE7Q_WsPHlxinPcQOtdW0BpI-rV3w2qd1KD7wUOyim9n21Wi2yrZ6G-70U1iGvs5QDhFR7VuApzt7hS9Pz68zRfp8uXpeX63TA3DrE9LCabmHDCRjMii4MBZUZU8pwxMBaLKqaa6YFEpCZEZxRiKoqZGlzmVxtApuhl917pRnY8V_I9y2qrF3VLZ1lutMOZCSkm-SKSvRrrzbtuyVxsbDDSNbsENQWUij8niH2CsmccRI3g9gsa7EDzU-xIEq-32ijL1t31EL3eeOhjd1F63xoY9H5M54yxiFyNmAWCvjha_DSqKCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25476539</pqid></control><display><type>article</type><title>Stereo correspondence through feature grouping and maximal cliques</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Horaud, R. ; Skordas, T.</creator><creatorcontrib>Horaud, R. ; Skordas, T.</creatorcontrib><description>The authors propose a method for solving the stereo correspondence problem. The method consists of extracting local image structures and matching similar such structures between two images. Linear edge segments are extracted from both the left and right images. Each segment is characterized by its position and orientation in the image as well as its relationships with the nearby segments. A relational graph is thus built from each image. For each segment in one image as set of potential assignments is represented as a set of nodes in a correspondence graph. Arcs in the graph represent compatible assignments established on the basis of segment relationships. Stereo matching becomes equivalent to searching for sets of mutually compatible nodes in this graph. Sets are found by looking for maximal cliques. The maximal clique best suited to represent a stereo correspondence is selected using a benefit function. Numerous results obtained with this method are shown.< ></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.42855</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Exact sciences and technology ; Extraterrestrial measurements ; Geometry ; Graphics ; Image segmentation ; Image sensors ; Layout ; Pattern recognition. Digital image processing. Computational geometry ; Stereo vision</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1989-11, Vol.11 (11), p.1168-1180</ispartof><rights>1990 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-b9ecf55e019419775e547db5634ecde8d63a3a74775b1192300e77f3cab639cc3</citedby><cites>FETCH-LOGICAL-c404t-b9ecf55e019419775e547db5634ecde8d63a3a74775b1192300e77f3cab639cc3</cites><orcidid>0000-0001-5232-024X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/42855$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27900,27901,54770</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6635454$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/inria-00589991$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Horaud, R.</creatorcontrib><creatorcontrib>Skordas, T.</creatorcontrib><title>Stereo correspondence through feature grouping and maximal cliques</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>The authors propose a method for solving the stereo correspondence problem. The method consists of extracting local image structures and matching similar such structures between two images. Linear edge segments are extracted from both the left and right images. Each segment is characterized by its position and orientation in the image as well as its relationships with the nearby segments. A relational graph is thus built from each image. For each segment in one image as set of potential assignments is represented as a set of nodes in a correspondence graph. Arcs in the graph represent compatible assignments established on the basis of segment relationships. Stereo matching becomes equivalent to searching for sets of mutually compatible nodes in this graph. Sets are found by looking for maximal cliques. The maximal clique best suited to represent a stereo correspondence is selected using a benefit function. Numerous results obtained with this method are shown.< ></description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Extraterrestrial measurements</subject><subject>Geometry</subject><subject>Graphics</subject><subject>Image segmentation</subject><subject>Image sensors</subject><subject>Layout</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Stereo vision</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqNkMFLwzAYxYMoOKfg1VsPIoJ0Jk3SJkcd6oSBB_Uc0vTrFumamrSi_72ZHTt7-vh4P957PITOCZ4RguUtZTOWCc4P0IRIKlPKqTxEE0zyLBUiE8foJIQPjAnjmE7Q_WsPHlxinPcQOtdW0BpI-rV3w2qd1KD7wUOyim9n21Wi2yrZ6G-70U1iGvs5QDhFR7VuApzt7hS9Pz68zRfp8uXpeX63TA3DrE9LCabmHDCRjMii4MBZUZU8pwxMBaLKqaa6YFEpCZEZxRiKoqZGlzmVxtApuhl917pRnY8V_I9y2qrF3VLZ1lutMOZCSkm-SKSvRrrzbtuyVxsbDDSNbsENQWUij8niH2CsmccRI3g9gsa7EDzU-xIEq-32ijL1t31EL3eeOhjd1F63xoY9H5M54yxiFyNmAWCvjha_DSqKCg</recordid><startdate>19891101</startdate><enddate>19891101</enddate><creator>Horaud, R.</creator><creator>Skordas, T.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5232-024X</orcidid></search><sort><creationdate>19891101</creationdate><title>Stereo correspondence through feature grouping and maximal cliques</title><author>Horaud, R. ; Skordas, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-b9ecf55e019419775e547db5634ecde8d63a3a74775b1192300e77f3cab639cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Extraterrestrial measurements</topic><topic>Geometry</topic><topic>Graphics</topic><topic>Image segmentation</topic><topic>Image sensors</topic><topic>Layout</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Stereo vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horaud, R.</creatorcontrib><creatorcontrib>Skordas, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horaud, R.</au><au>Skordas, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stereo correspondence through feature grouping and maximal cliques</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1989-11-01</date><risdate>1989</risdate><volume>11</volume><issue>11</issue><spage>1168</spage><epage>1180</epage><pages>1168-1180</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>The authors propose a method for solving the stereo correspondence problem. The method consists of extracting local image structures and matching similar such structures between two images. Linear edge segments are extracted from both the left and right images. Each segment is characterized by its position and orientation in the image as well as its relationships with the nearby segments. A relational graph is thus built from each image. For each segment in one image as set of potential assignments is represented as a set of nodes in a correspondence graph. Arcs in the graph represent compatible assignments established on the basis of segment relationships. Stereo matching becomes equivalent to searching for sets of mutually compatible nodes in this graph. Sets are found by looking for maximal cliques. The maximal clique best suited to represent a stereo correspondence is selected using a benefit function. Numerous results obtained with this method are shown.< ></abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.42855</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5232-024X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 1989-11, Vol.11 (11), p.1168-1180 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_25476539 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Artificial intelligence Computer Science Computer science control theory systems Exact sciences and technology Extraterrestrial measurements Geometry Graphics Image segmentation Image sensors Layout Pattern recognition. Digital image processing. Computational geometry Stereo vision |
title | Stereo correspondence through feature grouping and maximal cliques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T12%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stereo%20correspondence%20through%20feature%20grouping%20and%20maximal%20cliques&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Horaud,%20R.&rft.date=1989-11-01&rft.volume=11&rft.issue=11&rft.spage=1168&rft.epage=1180&rft.pages=1168-1180&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.42855&rft_dat=%3Cproquest_hal_p%3E28663481%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-b9ecf55e019419775e547db5634ecde8d63a3a74775b1192300e77f3cab639cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25476539&rft_id=info:pmid/&rft_ieee_id=42855&rfr_iscdi=true |