Loading…

A state space formulation for model predictive control

Model predictive control (MPC) schemes such as MOCCA, DMC, MAC, MPHC, and IMC use discrete step (or impulse) response data rather than a parametric model. They predict the future output trajectory of the process {ŷ(k + i), i = 1, …, P}, then the controller calculates the required control action {Δu(...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 1989-02, Vol.35 (2), p.241-249
Main Authors: Li, Sifu, Lim, Kian Y., Fisher, D. Grant
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4838-b1d0bde2b230052fb81fb1c835326848944226cefa11d65ae13978ee117d313e3
cites cdi_FETCH-LOGICAL-c4838-b1d0bde2b230052fb81fb1c835326848944226cefa11d65ae13978ee117d313e3
container_end_page 249
container_issue 2
container_start_page 241
container_title AIChE journal
container_volume 35
creator Li, Sifu
Lim, Kian Y.
Fisher, D. Grant
description Model predictive control (MPC) schemes such as MOCCA, DMC, MAC, MPHC, and IMC use discrete step (or impulse) response data rather than a parametric model. They predict the future output trajectory of the process {ŷ(k + i), i = 1, …, P}, then the controller calculates the required control action {Δu(k + i), i = 0, 1, …, M − 1} so that the difference between the predicted trajectory and user‐specified (setpoint) trajectory is minimized. This paper shows how the step (impulse) response model can be put into state space form thus reducing computation time and permitting the use of state space theorems and techniques with any of the above‐mentioned MPC schemes. A series of experimental runs on a simple pilot plant shows that a Kalman filter based on the proposed state space model gives better performance that direct use of the step response data for prediction.
doi_str_mv 10.1002/aic.690350208
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25483623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25483623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4838-b1d0bde2b230052fb81fb1c835326848944226cefa11d65ae13978ee117d313e3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFaX7rMQd6nzyDyyLNU-oFQXiuBmmExuYHSaxJlU7b83paW4cnUffPecy0HomuARwZjeGWdHIseMY4rVCRoQnsmU55ifogHGmKT9gpyjixjf-4lKRQdIjJPYmQ6S2BoLSdWE9cabzjX1rk_WTQk-aQOUznbuCxLb1F1o_CU6q4yPcHWoQ_QyfXiezNPl42wxGS9Tmymm0oKUuCiBFpRhzGlVKFIVxCrGGRUqU3mWUSosVIaQUnADhOVSARAiS0YYsCG63eu2ofncQOz02kUL3psamk3UlPc-grIeTPegDU2MASrdBrc2YasJ1rt0dJ-OPqbT8zcHYROt8VUwtXXxeCSJwFm-w-Qe-3Yetv9r6vFi8tfg8JCLHfwcL0340EIyyfXraqanK_k0Z_dvesp-AbGwgoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25483623</pqid></control><display><type>article</type><title>A state space formulation for model predictive control</title><source>Wiley Online Library All Backfiles</source><creator>Li, Sifu ; Lim, Kian Y. ; Fisher, D. Grant</creator><creatorcontrib>Li, Sifu ; Lim, Kian Y. ; Fisher, D. Grant</creatorcontrib><description>Model predictive control (MPC) schemes such as MOCCA, DMC, MAC, MPHC, and IMC use discrete step (or impulse) response data rather than a parametric model. They predict the future output trajectory of the process {ŷ(k + i), i = 1, …, P}, then the controller calculates the required control action {Δu(k + i), i = 0, 1, …, M − 1} so that the difference between the predicted trajectory and user‐specified (setpoint) trajectory is minimized. This paper shows how the step (impulse) response model can be put into state space form thus reducing computation time and permitting the use of state space theorems and techniques with any of the above‐mentioned MPC schemes. A series of experimental runs on a simple pilot plant shows that a Kalman filter based on the proposed state space model gives better performance that direct use of the step response data for prediction.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690350208</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization ; Applied sciences ; Chemical engineering ; Exact sciences and technology</subject><ispartof>AIChE journal, 1989-02, Vol.35 (2), p.241-249</ispartof><rights>Copyright © 1989 American Institute of Chemical Engineers</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4838-b1d0bde2b230052fb81fb1c835326848944226cefa11d65ae13978ee117d313e3</citedby><cites>FETCH-LOGICAL-c4838-b1d0bde2b230052fb81fb1c835326848944226cefa11d65ae13978ee117d313e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690350208$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690350208$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27924,27925,46049,46473</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7160498$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Sifu</creatorcontrib><creatorcontrib>Lim, Kian Y.</creatorcontrib><creatorcontrib>Fisher, D. Grant</creatorcontrib><title>A state space formulation for model predictive control</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Model predictive control (MPC) schemes such as MOCCA, DMC, MAC, MPHC, and IMC use discrete step (or impulse) response data rather than a parametric model. They predict the future output trajectory of the process {ŷ(k + i), i = 1, …, P}, then the controller calculates the required control action {Δu(k + i), i = 0, 1, …, M − 1} so that the difference between the predicted trajectory and user‐specified (setpoint) trajectory is minimized. This paper shows how the step (impulse) response model can be put into state space form thus reducing computation time and permitting the use of state space theorems and techniques with any of the above‐mentioned MPC schemes. A series of experimental runs on a simple pilot plant shows that a Kalman filter based on the proposed state space model gives better performance that direct use of the step response data for prediction.</description><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFaX7rMQd6nzyDyyLNU-oFQXiuBmmExuYHSaxJlU7b83paW4cnUffPecy0HomuARwZjeGWdHIseMY4rVCRoQnsmU55ifogHGmKT9gpyjixjf-4lKRQdIjJPYmQ6S2BoLSdWE9cabzjX1rk_WTQk-aQOUznbuCxLb1F1o_CU6q4yPcHWoQ_QyfXiezNPl42wxGS9Tmymm0oKUuCiBFpRhzGlVKFIVxCrGGRUqU3mWUSosVIaQUnADhOVSARAiS0YYsCG63eu2ofncQOz02kUL3psamk3UlPc-grIeTPegDU2MASrdBrc2YasJ1rt0dJ-OPqbT8zcHYROt8VUwtXXxeCSJwFm-w-Qe-3Yetv9r6vFi8tfg8JCLHfwcL0340EIyyfXraqanK_k0Z_dvesp-AbGwgoQ</recordid><startdate>198902</startdate><enddate>198902</enddate><creator>Li, Sifu</creator><creator>Lim, Kian Y.</creator><creator>Fisher, D. Grant</creator><general>American Institute of Chemical Engineers</general><general>Wiley Subscription Services</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>198902</creationdate><title>A state space formulation for model predictive control</title><author>Li, Sifu ; Lim, Kian Y. ; Fisher, D. Grant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4838-b1d0bde2b230052fb81fb1c835326848944226cefa11d65ae13978ee117d313e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Sifu</creatorcontrib><creatorcontrib>Lim, Kian Y.</creatorcontrib><creatorcontrib>Fisher, D. Grant</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Sifu</au><au>Lim, Kian Y.</au><au>Fisher, D. Grant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A state space formulation for model predictive control</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1989-02</date><risdate>1989</risdate><volume>35</volume><issue>2</issue><spage>241</spage><epage>249</epage><pages>241-249</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Model predictive control (MPC) schemes such as MOCCA, DMC, MAC, MPHC, and IMC use discrete step (or impulse) response data rather than a parametric model. They predict the future output trajectory of the process {ŷ(k + i), i = 1, …, P}, then the controller calculates the required control action {Δu(k + i), i = 0, 1, …, M − 1} so that the difference between the predicted trajectory and user‐specified (setpoint) trajectory is minimized. This paper shows how the step (impulse) response model can be put into state space form thus reducing computation time and permitting the use of state space theorems and techniques with any of the above‐mentioned MPC schemes. A series of experimental runs on a simple pilot plant shows that a Kalman filter based on the proposed state space model gives better performance that direct use of the step response data for prediction.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.690350208</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 1989-02, Vol.35 (2), p.241-249
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_25483623
source Wiley Online Library All Backfiles
subjects Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization
Applied sciences
Chemical engineering
Exact sciences and technology
title A state space formulation for model predictive control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20state%20space%20formulation%20for%20model%20predictive%20control&rft.jtitle=AIChE%20journal&rft.au=Li,%20Sifu&rft.date=1989-02&rft.volume=35&rft.issue=2&rft.spage=241&rft.epage=249&rft.pages=241-249&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690350208&rft_dat=%3Cproquest_cross%3E25483623%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4838-b1d0bde2b230052fb81fb1c835326848944226cefa11d65ae13978ee117d313e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25483623&rft_id=info:pmid/&rfr_iscdi=true