Loading…
A state space formulation for model predictive control
Model predictive control (MPC) schemes such as MOCCA, DMC, MAC, MPHC, and IMC use discrete step (or impulse) response data rather than a parametric model. They predict the future output trajectory of the process {ŷ(k + i), i = 1, …, P}, then the controller calculates the required control action {Δu(...
Saved in:
Published in: | AIChE journal 1989-02, Vol.35 (2), p.241-249 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4838-b1d0bde2b230052fb81fb1c835326848944226cefa11d65ae13978ee117d313e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4838-b1d0bde2b230052fb81fb1c835326848944226cefa11d65ae13978ee117d313e3 |
container_end_page | 249 |
container_issue | 2 |
container_start_page | 241 |
container_title | AIChE journal |
container_volume | 35 |
creator | Li, Sifu Lim, Kian Y. Fisher, D. Grant |
description | Model predictive control (MPC) schemes such as MOCCA, DMC, MAC, MPHC, and IMC use discrete step (or impulse) response data rather than a parametric model. They predict the future output trajectory of the process {ŷ(k + i), i = 1, …, P}, then the controller calculates the required control action {Δu(k + i), i = 0, 1, …, M − 1} so that the difference between the predicted trajectory and user‐specified (setpoint) trajectory is minimized. This paper shows how the step (impulse) response model can be put into state space form thus reducing computation time and permitting the use of state space theorems and techniques with any of the above‐mentioned MPC schemes. A series of experimental runs on a simple pilot plant shows that a Kalman filter based on the proposed state space model gives better performance that direct use of the step response data for prediction. |
doi_str_mv | 10.1002/aic.690350208 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25483623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25483623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4838-b1d0bde2b230052fb81fb1c835326848944226cefa11d65ae13978ee117d313e3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFaX7rMQd6nzyDyyLNU-oFQXiuBmmExuYHSaxJlU7b83paW4cnUffPecy0HomuARwZjeGWdHIseMY4rVCRoQnsmU55ifogHGmKT9gpyjixjf-4lKRQdIjJPYmQ6S2BoLSdWE9cabzjX1rk_WTQk-aQOUznbuCxLb1F1o_CU6q4yPcHWoQ_QyfXiezNPl42wxGS9Tmymm0oKUuCiBFpRhzGlVKFIVxCrGGRUqU3mWUSosVIaQUnADhOVSARAiS0YYsCG63eu2ofncQOz02kUL3psamk3UlPc-grIeTPegDU2MASrdBrc2YasJ1rt0dJ-OPqbT8zcHYROt8VUwtXXxeCSJwFm-w-Qe-3Yetv9r6vFi8tfg8JCLHfwcL0340EIyyfXraqanK_k0Z_dvesp-AbGwgoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25483623</pqid></control><display><type>article</type><title>A state space formulation for model predictive control</title><source>Wiley Online Library All Backfiles</source><creator>Li, Sifu ; Lim, Kian Y. ; Fisher, D. Grant</creator><creatorcontrib>Li, Sifu ; Lim, Kian Y. ; Fisher, D. Grant</creatorcontrib><description>Model predictive control (MPC) schemes such as MOCCA, DMC, MAC, MPHC, and IMC use discrete step (or impulse) response data rather than a parametric model. They predict the future output trajectory of the process {ŷ(k + i), i = 1, …, P}, then the controller calculates the required control action {Δu(k + i), i = 0, 1, …, M − 1} so that the difference between the predicted trajectory and user‐specified (setpoint) trajectory is minimized. This paper shows how the step (impulse) response model can be put into state space form thus reducing computation time and permitting the use of state space theorems and techniques with any of the above‐mentioned MPC schemes. A series of experimental runs on a simple pilot plant shows that a Kalman filter based on the proposed state space model gives better performance that direct use of the step response data for prediction.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690350208</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization ; Applied sciences ; Chemical engineering ; Exact sciences and technology</subject><ispartof>AIChE journal, 1989-02, Vol.35 (2), p.241-249</ispartof><rights>Copyright © 1989 American Institute of Chemical Engineers</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4838-b1d0bde2b230052fb81fb1c835326848944226cefa11d65ae13978ee117d313e3</citedby><cites>FETCH-LOGICAL-c4838-b1d0bde2b230052fb81fb1c835326848944226cefa11d65ae13978ee117d313e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690350208$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690350208$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27924,27925,46049,46473</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7160498$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Sifu</creatorcontrib><creatorcontrib>Lim, Kian Y.</creatorcontrib><creatorcontrib>Fisher, D. Grant</creatorcontrib><title>A state space formulation for model predictive control</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Model predictive control (MPC) schemes such as MOCCA, DMC, MAC, MPHC, and IMC use discrete step (or impulse) response data rather than a parametric model. They predict the future output trajectory of the process {ŷ(k + i), i = 1, …, P}, then the controller calculates the required control action {Δu(k + i), i = 0, 1, …, M − 1} so that the difference between the predicted trajectory and user‐specified (setpoint) trajectory is minimized. This paper shows how the step (impulse) response model can be put into state space form thus reducing computation time and permitting the use of state space theorems and techniques with any of the above‐mentioned MPC schemes. A series of experimental runs on a simple pilot plant shows that a Kalman filter based on the proposed state space model gives better performance that direct use of the step response data for prediction.</description><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFaX7rMQd6nzyDyyLNU-oFQXiuBmmExuYHSaxJlU7b83paW4cnUffPecy0HomuARwZjeGWdHIseMY4rVCRoQnsmU55ifogHGmKT9gpyjixjf-4lKRQdIjJPYmQ6S2BoLSdWE9cabzjX1rk_WTQk-aQOUznbuCxLb1F1o_CU6q4yPcHWoQ_QyfXiezNPl42wxGS9Tmymm0oKUuCiBFpRhzGlVKFIVxCrGGRUqU3mWUSosVIaQUnADhOVSARAiS0YYsCG63eu2ofncQOz02kUL3psamk3UlPc-grIeTPegDU2MASrdBrc2YasJ1rt0dJ-OPqbT8zcHYROt8VUwtXXxeCSJwFm-w-Qe-3Yetv9r6vFi8tfg8JCLHfwcL0340EIyyfXraqanK_k0Z_dvesp-AbGwgoQ</recordid><startdate>198902</startdate><enddate>198902</enddate><creator>Li, Sifu</creator><creator>Lim, Kian Y.</creator><creator>Fisher, D. Grant</creator><general>American Institute of Chemical Engineers</general><general>Wiley Subscription Services</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>198902</creationdate><title>A state space formulation for model predictive control</title><author>Li, Sifu ; Lim, Kian Y. ; Fisher, D. Grant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4838-b1d0bde2b230052fb81fb1c835326848944226cefa11d65ae13978ee117d313e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Sifu</creatorcontrib><creatorcontrib>Lim, Kian Y.</creatorcontrib><creatorcontrib>Fisher, D. Grant</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Sifu</au><au>Lim, Kian Y.</au><au>Fisher, D. Grant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A state space formulation for model predictive control</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1989-02</date><risdate>1989</risdate><volume>35</volume><issue>2</issue><spage>241</spage><epage>249</epage><pages>241-249</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Model predictive control (MPC) schemes such as MOCCA, DMC, MAC, MPHC, and IMC use discrete step (or impulse) response data rather than a parametric model. They predict the future output trajectory of the process {ŷ(k + i), i = 1, …, P}, then the controller calculates the required control action {Δu(k + i), i = 0, 1, …, M − 1} so that the difference between the predicted trajectory and user‐specified (setpoint) trajectory is minimized. This paper shows how the step (impulse) response model can be put into state space form thus reducing computation time and permitting the use of state space theorems and techniques with any of the above‐mentioned MPC schemes. A series of experimental runs on a simple pilot plant shows that a Kalman filter based on the proposed state space model gives better performance that direct use of the step response data for prediction.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.690350208</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 1989-02, Vol.35 (2), p.241-249 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_25483623 |
source | Wiley Online Library All Backfiles |
subjects | Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization Applied sciences Chemical engineering Exact sciences and technology |
title | A state space formulation for model predictive control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20state%20space%20formulation%20for%20model%20predictive%20control&rft.jtitle=AIChE%20journal&rft.au=Li,%20Sifu&rft.date=1989-02&rft.volume=35&rft.issue=2&rft.spage=241&rft.epage=249&rft.pages=241-249&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690350208&rft_dat=%3Cproquest_cross%3E25483623%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4838-b1d0bde2b230052fb81fb1c835326848944226cefa11d65ae13978ee117d313e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25483623&rft_id=info:pmid/&rfr_iscdi=true |