Loading…

Adjusting the Covalency of Metal–Oxygen Bonds in LaCoO3 by Sr and Fe Cation Codoping to Achieve Highly Efficient Electrocatalysts for Aprotic Lithium–Oxygen Batteries

Developing high-efficiency dual-functional catalysts to promote oxygen electrode reactions is critical for achieving high-performance aprotic lithium–oxygen (Li–O2) batteries. Herein, Sr and Fe cation-codoped LaCoO3 perovskite (La0.8Sr0.2Co0.8Fe0.2O3−σ, LSCFO) porous nanoparticles are fabricated as...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-07, Vol.13 (28), p.33133-33146
Main Authors: Du, Dayue, Zheng, Ruixin, Chen, Xianfei, Xiang, Wei, Zhao, Chuan, Zhou, Bo, Li, Runjing, Xu, Haoyang, Shu, Chaozhu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 33146
container_issue 28
container_start_page 33133
container_title ACS applied materials & interfaces
container_volume 13
creator Du, Dayue
Zheng, Ruixin
Chen, Xianfei
Xiang, Wei
Zhao, Chuan
Zhou, Bo
Li, Runjing
Xu, Haoyang
Shu, Chaozhu
description Developing high-efficiency dual-functional catalysts to promote oxygen electrode reactions is critical for achieving high-performance aprotic lithium–oxygen (Li–O2) batteries. Herein, Sr and Fe cation-codoped LaCoO3 perovskite (La0.8Sr0.2Co0.8Fe0.2O3−σ, LSCFO) porous nanoparticles are fabricated as promising electrocatalysts for Li–O2 cells. The results demonstrate that the LSCFO-based Li–O2 batteries exhibit an extremely low overpotential of 0.32 V, ultrahigh specific capacity of 26 833 mA h g–1, and superior long-term cycling stability (200 cycles at 300 mA g–1). These prominent performances can be partially attributed to the existence of abundant coordination unsaturated sites caused by oxygen vacancies in LSCFO. Most importantly, density functional theory (DFT) calculations reveal that codoping of Sr and Fe cations in LaCoO3 results in the increased covalency of Co 3d–O 2p bonds and the transition of Co3+ from an ordinary low-spin state to an intermediate-spin state, eventually resulting in the transformation from nonconductor LCO to metallic LSCFO. In addition, based on the theoretical calculations, it is found that the inherent adsorption capability of LSCFO toward the LiO2 intermediate is reduced due to the increased covalency of Co 3d–O 2p bonds, leading to the formation of large granule-like Li2O2, which can be effectively decomposed on the LSCFO surface during the charging process. Notably, this work demonstrates a unique insight into the design of advanced perovskite oxide catalysts via adjusting the covalency of transition-metal–oxygen bonds for high-performance metal–air batteries.
doi_str_mv 10.1021/acsami.1c08586
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2550268856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550268856</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-c9d145d535ba819099381544439e6551136a8b8b9f90d11d19bce596d8f430023</originalsourceid><addsrcrecordid>eNpNkUFOwzAQRSMEEqWwZT1LhNRix3ZkL0tVKFJQF8A6cmyndZXaJXYqsuMO3IJjcRICrRCrmcX_b77mJ8klRmOMUnwjVZAbO8YKccazo2SABaUjnrL0-G-n9DQ5C2GNUEZSxAbJ50Sv2xCtW0JcGZj6nayNUx34Ch5NlPXX-8firVsaB7fe6QDWQS6nfkGg7OCpAek03PVGGa13vV_77S_Mw0StrNkZmNvlqu5gVlVWWeMizGqjYuOV7PFdiAEq38Bk2_hoFeQ2rmy7-XdWxmgaa8J5clLJOpiLwxwmL3ez5-l8lC_uH6aTfCQxI3GkhMaUaUZYKTkWSAjCMaOUEmEyxjAmmeQlL0UlkMZYY1Eqw0SmeUUJQikZJld7bp_otTUhFhsblKlr6YxvQ5EyhtKMc5b10uu9tP99sfZt4_pgBUbFTyHFvpDiUAj5BspEglg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550268856</pqid></control><display><type>article</type><title>Adjusting the Covalency of Metal–Oxygen Bonds in LaCoO3 by Sr and Fe Cation Codoping to Achieve Highly Efficient Electrocatalysts for Aprotic Lithium–Oxygen Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Du, Dayue ; Zheng, Ruixin ; Chen, Xianfei ; Xiang, Wei ; Zhao, Chuan ; Zhou, Bo ; Li, Runjing ; Xu, Haoyang ; Shu, Chaozhu</creator><creatorcontrib>Du, Dayue ; Zheng, Ruixin ; Chen, Xianfei ; Xiang, Wei ; Zhao, Chuan ; Zhou, Bo ; Li, Runjing ; Xu, Haoyang ; Shu, Chaozhu</creatorcontrib><description>Developing high-efficiency dual-functional catalysts to promote oxygen electrode reactions is critical for achieving high-performance aprotic lithium–oxygen (Li–O2) batteries. Herein, Sr and Fe cation-codoped LaCoO3 perovskite (La0.8Sr0.2Co0.8Fe0.2O3−σ, LSCFO) porous nanoparticles are fabricated as promising electrocatalysts for Li–O2 cells. The results demonstrate that the LSCFO-based Li–O2 batteries exhibit an extremely low overpotential of 0.32 V, ultrahigh specific capacity of 26 833 mA h g–1, and superior long-term cycling stability (200 cycles at 300 mA g–1). These prominent performances can be partially attributed to the existence of abundant coordination unsaturated sites caused by oxygen vacancies in LSCFO. Most importantly, density functional theory (DFT) calculations reveal that codoping of Sr and Fe cations in LaCoO3 results in the increased covalency of Co 3d–O 2p bonds and the transition of Co3+ from an ordinary low-spin state to an intermediate-spin state, eventually resulting in the transformation from nonconductor LCO to metallic LSCFO. In addition, based on the theoretical calculations, it is found that the inherent adsorption capability of LSCFO toward the LiO2 intermediate is reduced due to the increased covalency of Co 3d–O 2p bonds, leading to the formation of large granule-like Li2O2, which can be effectively decomposed on the LSCFO surface during the charging process. Notably, this work demonstrates a unique insight into the design of advanced perovskite oxide catalysts via adjusting the covalency of transition-metal–oxygen bonds for high-performance metal–air batteries.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c08586</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2021-07, Vol.13 (28), p.33133-33146</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5078-3950 ; 0000-0002-8667-5257 ; 0000-0003-4025-0330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Du, Dayue</creatorcontrib><creatorcontrib>Zheng, Ruixin</creatorcontrib><creatorcontrib>Chen, Xianfei</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Zhao, Chuan</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Li, Runjing</creatorcontrib><creatorcontrib>Xu, Haoyang</creatorcontrib><creatorcontrib>Shu, Chaozhu</creatorcontrib><title>Adjusting the Covalency of Metal–Oxygen Bonds in LaCoO3 by Sr and Fe Cation Codoping to Achieve Highly Efficient Electrocatalysts for Aprotic Lithium–Oxygen Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Developing high-efficiency dual-functional catalysts to promote oxygen electrode reactions is critical for achieving high-performance aprotic lithium–oxygen (Li–O2) batteries. Herein, Sr and Fe cation-codoped LaCoO3 perovskite (La0.8Sr0.2Co0.8Fe0.2O3−σ, LSCFO) porous nanoparticles are fabricated as promising electrocatalysts for Li–O2 cells. The results demonstrate that the LSCFO-based Li–O2 batteries exhibit an extremely low overpotential of 0.32 V, ultrahigh specific capacity of 26 833 mA h g–1, and superior long-term cycling stability (200 cycles at 300 mA g–1). These prominent performances can be partially attributed to the existence of abundant coordination unsaturated sites caused by oxygen vacancies in LSCFO. Most importantly, density functional theory (DFT) calculations reveal that codoping of Sr and Fe cations in LaCoO3 results in the increased covalency of Co 3d–O 2p bonds and the transition of Co3+ from an ordinary low-spin state to an intermediate-spin state, eventually resulting in the transformation from nonconductor LCO to metallic LSCFO. In addition, based on the theoretical calculations, it is found that the inherent adsorption capability of LSCFO toward the LiO2 intermediate is reduced due to the increased covalency of Co 3d–O 2p bonds, leading to the formation of large granule-like Li2O2, which can be effectively decomposed on the LSCFO surface during the charging process. Notably, this work demonstrates a unique insight into the design of advanced perovskite oxide catalysts via adjusting the covalency of transition-metal–oxygen bonds for high-performance metal–air batteries.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkUFOwzAQRSMEEqWwZT1LhNRix3ZkL0tVKFJQF8A6cmyndZXaJXYqsuMO3IJjcRICrRCrmcX_b77mJ8klRmOMUnwjVZAbO8YKccazo2SABaUjnrL0-G-n9DQ5C2GNUEZSxAbJ50Sv2xCtW0JcGZj6nayNUx34Ch5NlPXX-8firVsaB7fe6QDWQS6nfkGg7OCpAek03PVGGa13vV_77S_Mw0StrNkZmNvlqu5gVlVWWeMizGqjYuOV7PFdiAEq38Bk2_hoFeQ2rmy7-XdWxmgaa8J5clLJOpiLwxwmL3ez5-l8lC_uH6aTfCQxI3GkhMaUaUZYKTkWSAjCMaOUEmEyxjAmmeQlL0UlkMZYY1Eqw0SmeUUJQikZJld7bp_otTUhFhsblKlr6YxvQ5EyhtKMc5b10uu9tP99sfZt4_pgBUbFTyHFvpDiUAj5BspEglg</recordid><startdate>20210721</startdate><enddate>20210721</enddate><creator>Du, Dayue</creator><creator>Zheng, Ruixin</creator><creator>Chen, Xianfei</creator><creator>Xiang, Wei</creator><creator>Zhao, Chuan</creator><creator>Zhou, Bo</creator><creator>Li, Runjing</creator><creator>Xu, Haoyang</creator><creator>Shu, Chaozhu</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5078-3950</orcidid><orcidid>https://orcid.org/0000-0002-8667-5257</orcidid><orcidid>https://orcid.org/0000-0003-4025-0330</orcidid></search><sort><creationdate>20210721</creationdate><title>Adjusting the Covalency of Metal–Oxygen Bonds in LaCoO3 by Sr and Fe Cation Codoping to Achieve Highly Efficient Electrocatalysts for Aprotic Lithium–Oxygen Batteries</title><author>Du, Dayue ; Zheng, Ruixin ; Chen, Xianfei ; Xiang, Wei ; Zhao, Chuan ; Zhou, Bo ; Li, Runjing ; Xu, Haoyang ; Shu, Chaozhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-c9d145d535ba819099381544439e6551136a8b8b9f90d11d19bce596d8f430023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Dayue</creatorcontrib><creatorcontrib>Zheng, Ruixin</creatorcontrib><creatorcontrib>Chen, Xianfei</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Zhao, Chuan</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Li, Runjing</creatorcontrib><creatorcontrib>Xu, Haoyang</creatorcontrib><creatorcontrib>Shu, Chaozhu</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Dayue</au><au>Zheng, Ruixin</au><au>Chen, Xianfei</au><au>Xiang, Wei</au><au>Zhao, Chuan</au><au>Zhou, Bo</au><au>Li, Runjing</au><au>Xu, Haoyang</au><au>Shu, Chaozhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjusting the Covalency of Metal–Oxygen Bonds in LaCoO3 by Sr and Fe Cation Codoping to Achieve Highly Efficient Electrocatalysts for Aprotic Lithium–Oxygen Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-07-21</date><risdate>2021</risdate><volume>13</volume><issue>28</issue><spage>33133</spage><epage>33146</epage><pages>33133-33146</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Developing high-efficiency dual-functional catalysts to promote oxygen electrode reactions is critical for achieving high-performance aprotic lithium–oxygen (Li–O2) batteries. Herein, Sr and Fe cation-codoped LaCoO3 perovskite (La0.8Sr0.2Co0.8Fe0.2O3−σ, LSCFO) porous nanoparticles are fabricated as promising electrocatalysts for Li–O2 cells. The results demonstrate that the LSCFO-based Li–O2 batteries exhibit an extremely low overpotential of 0.32 V, ultrahigh specific capacity of 26 833 mA h g–1, and superior long-term cycling stability (200 cycles at 300 mA g–1). These prominent performances can be partially attributed to the existence of abundant coordination unsaturated sites caused by oxygen vacancies in LSCFO. Most importantly, density functional theory (DFT) calculations reveal that codoping of Sr and Fe cations in LaCoO3 results in the increased covalency of Co 3d–O 2p bonds and the transition of Co3+ from an ordinary low-spin state to an intermediate-spin state, eventually resulting in the transformation from nonconductor LCO to metallic LSCFO. In addition, based on the theoretical calculations, it is found that the inherent adsorption capability of LSCFO toward the LiO2 intermediate is reduced due to the increased covalency of Co 3d–O 2p bonds, leading to the formation of large granule-like Li2O2, which can be effectively decomposed on the LSCFO surface during the charging process. Notably, this work demonstrates a unique insight into the design of advanced perovskite oxide catalysts via adjusting the covalency of transition-metal–oxygen bonds for high-performance metal–air batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c08586</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5078-3950</orcidid><orcidid>https://orcid.org/0000-0002-8667-5257</orcidid><orcidid>https://orcid.org/0000-0003-4025-0330</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-07, Vol.13 (28), p.33133-33146
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2550268856
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Energy, Environmental, and Catalysis Applications
title Adjusting the Covalency of Metal–Oxygen Bonds in LaCoO3 by Sr and Fe Cation Codoping to Achieve Highly Efficient Electrocatalysts for Aprotic Lithium–Oxygen Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T10%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjusting%20the%20Covalency%20of%20Metal%E2%80%93Oxygen%20Bonds%20in%20LaCoO3%20by%20Sr%20and%20Fe%20Cation%20Codoping%20to%20Achieve%20Highly%20Efficient%20Electrocatalysts%20for%20Aprotic%20Lithium%E2%80%93Oxygen%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Du,%20Dayue&rft.date=2021-07-21&rft.volume=13&rft.issue=28&rft.spage=33133&rft.epage=33146&rft.pages=33133-33146&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c08586&rft_dat=%3Cproquest_acs_j%3E2550268856%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a153t-c9d145d535ba819099381544439e6551136a8b8b9f90d11d19bce596d8f430023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550268856&rft_id=info:pmid/&rfr_iscdi=true