Loading…

Utilization of Chlorella pyrenoidosa for Remediation of Common Effluent Treatment Plant Wastewater in Coupling with Co-relational Study: An Experimental Approach

Earlier investigations on biological methods of wastewater treatment have revealed that algal based wastewater treatment could be a green, cost effective and efficient approach for the removal of heavy metals. So, this study aimed to assess the potential of microalga Chlorella pyrenoidosa for remedi...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of environmental contamination and toxicology 2022-03, Vol.108 (3), p.507-517
Main Authors: Kothari, Richa, Pandey, Arya, Ahmad, Shamshad, Singh, Har Mohan, Pathak, Vinayak V., Tyagi, V. V., Kumar, Kapil, Sari, Ahmet
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Earlier investigations on biological methods of wastewater treatment have revealed that algal based wastewater treatment could be a green, cost effective and efficient approach for the removal of heavy metals. So, this study aimed to assess the potential of microalga Chlorella pyrenoidosa for remediation of heavy metals (Cr, Cu, Pb, Zn, Cd, Mn, and Ni) from varying concentration (25%, 50%, 75 and 100%) of wastewater collected from Common Effluent Treatment Plant. Heavy metals such as Cr, Cu, Pb, Zn, Cd, Mn, and Ni have been removed significantly from the wastewater, with percentage removal ranging from 73%, 60%, 75%, 66%, 87%, 83%, and 74% with 50% test solution, 57%, 59%, 70%, 56%, 72%, 66%, and 62% with 75% test solution, and 47%, 55%, 56%, 71%, 61%, 77%, and 72% with 100% test solution respectively. Studies on biochemical assay (protein, carbohydrate, and pigment) of Chlorella pyrenoidosa were also an important part of the present investigation to understand the interaction of heavy metals with algal biochemical compounds using Pearson correlation co-efficient. Biomass grown in CETP wastewater can be used for synthesis of various fruitful value-added end products like bio-diesel, pharmaceutical products, cosmetic products, bio-adsorbent etc.
ISSN:0007-4861
1432-0800
DOI:10.1007/s00128-021-03292-7