Loading…
Triphenyltin exposure causes changes in health-associated gut microbiome and metabolites in marine medaka
Triphenyltin (TPT), an organic compound with a wide range of applications, is often detected in water bodies and aquatic animals. However, the mechanism underlying the biological metabolic health problems caused by long-term exposure to environment concentrations of TPT remains unclear. The morpholo...
Saved in:
Published in: | Environmental pollution (1987) 2021-11, Vol.288, p.117751-117751, Article 117751 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Triphenyltin (TPT), an organic compound with a wide range of applications, is often detected in water bodies and aquatic animals. However, the mechanism underlying the biological metabolic health problems caused by long-term exposure to environment concentrations of TPT remains unclear. The morphology and gene expression in the gut and liver were investigated; and 16SrRNA gene amplification sequencing and non-targeted LC-MS/MS metabonomics were investigated after marine medaka (Oryzias melastigma) was treated with 1, 10, and 100 ng/L TPT for 21 days. During prolonged exposure to TPT, the adaptation mechanism maximized the energy of absorption, increased the length of intestinal microvilli, reduced the number of rough endoplasmic reticulum in the liver, and caused loss of weight. TPT exposure significantly changed the intestinal microbiome of marine medaka, thereby resulting in a significant decrease in microbial diversity. Following exposure to 100 ng/L TPT, the metabolic profiles were significantly changed and the altered metabolites were mainly concentrated in the lipid metabolic pathway. Finally, based on comprehensive network analysis, the association between the significantly changed bacteria and metabolites contributed further to the prediction of the impact of TPT on the host. This study provides a novel insight into the underlying mechanisms of host metabolic diseases caused by TPT and emphasizes the importance of monitoring pollutants in the environment.
[Display omitted]
•Chronic TPT exposure changed the intestinal microbiome in marine medaka.•Chronic TPT exposure made the maximized energy absorption.•Chronic TPT exposure reduced the number of rough endoplasmic reticulum.•Chronic TPT exposure regulated the lipid metabolic pathway. |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2021.117751 |