Loading…
Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy
Cascade biocatalytic reactions involving multiple antioxidative enzymes are necessary in living cells to regulate cellular metabolism and redox homeostasis. Substantial efforts have been made to construct cascade reactions through engineered enzyme mimics to improve intracellular metabolic flux, esp...
Saved in:
Published in: | Nanoscale 2021-08, Vol.13 (29), p.12613-12622 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c187t-fbc1da0330679b6cca29075417adbe608bbaa256c909f55b9c7a9612d63380103 |
---|---|
cites | |
container_end_page | 12622 |
container_issue | 29 |
container_start_page | 12613 |
container_title | Nanoscale |
container_volume | 13 |
creator | Zhang, Xinyu Zhang, Shitong Yang, Zaixing Wang, Zhuanhua Tian, Xin Zhou, Ruhong |
description | Cascade biocatalytic reactions involving multiple antioxidative enzymes are necessary in living cells to regulate cellular metabolism and redox homeostasis. Substantial efforts have been made to construct cascade reactions through engineered enzyme mimics to improve intracellular metabolic flux, especially under pathophysiological conditions. Here, we show that MoS2 nanozymes exhibit activities of four major cellular cascade antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Meanwhile, MoS2 nanozymes attenuate electron transfer in cytochrome c/H2O2 to ameliorate the inherent antioxidant defense system under stress conditions. Thus, MoS2 nanozymes function as a self-cascade platform to inhibit intracellular reactive oxygen species (ROS) production by modulating mitochondrial function and scavenging abundant ROS through their intrinsic antioxidant capacity. Density functional theory calculations reveal the underlying mechanisms of the intracellular environment-dependent catalase-like activity of MoS2 nanozymes. Furthermore, we find that the MoS2 nanozymes play a cytoprotective role in cells and significantly improve the treatment outcomes in a hepatic fibrosis mouse model. These results demonstrate the ROS-scavenging capacity of a single-component MoS2 nanozyme-based cascade reaction system and reveal the in-depth mechanism, which may advance the development of nanozyme-based antioxidative agents. |
doi_str_mv | 10.1039/d1nr02366g |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2552055879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552055879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-fbc1da0330679b6cca29075417adbe608bbaa256c909f55b9c7a9612d63380103</originalsourceid><addsrcrecordid>eNpdj01LAzEYhIMoWKsXf0HAi5fVN0mT3Ryl-AUVD9VzeZNNbMo2qckuqL_eLYoHTzMDD8MMIecMrhgIfd2ymIELpd4OyITDDCohan7459XsmJyUsgFQWigxIWbpOl9ZLBZbR5_SktOIMX19bl2hPmXqvA82uNjTEPuM1nXd0GGmGPuQPkKLo8QxtXTtdmOw1AeTUwmF9muXcfd5So48dsWd_eqUvN7dvswfqsXz_eP8ZlFZ1tR95Y1lLYIQoGptlLXINdRyxmpsjVPQGIPIpbIatJfSaFujVoy3SogGxvdTcvnTu8vpfXClX21D2e_F6NJQVlxKDlI2tR7Ri3_oJg05juv2lNQgoGHiGz4XZWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555903081</pqid></control><display><type>article</type><title>Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Zhang, Xinyu ; Zhang, Shitong ; Yang, Zaixing ; Wang, Zhuanhua ; Tian, Xin ; Zhou, Ruhong</creator><creatorcontrib>Zhang, Xinyu ; Zhang, Shitong ; Yang, Zaixing ; Wang, Zhuanhua ; Tian, Xin ; Zhou, Ruhong</creatorcontrib><description>Cascade biocatalytic reactions involving multiple antioxidative enzymes are necessary in living cells to regulate cellular metabolism and redox homeostasis. Substantial efforts have been made to construct cascade reactions through engineered enzyme mimics to improve intracellular metabolic flux, especially under pathophysiological conditions. Here, we show that MoS2 nanozymes exhibit activities of four major cellular cascade antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Meanwhile, MoS2 nanozymes attenuate electron transfer in cytochrome c/H2O2 to ameliorate the inherent antioxidant defense system under stress conditions. Thus, MoS2 nanozymes function as a self-cascade platform to inhibit intracellular reactive oxygen species (ROS) production by modulating mitochondrial function and scavenging abundant ROS through their intrinsic antioxidant capacity. Density functional theory calculations reveal the underlying mechanisms of the intracellular environment-dependent catalase-like activity of MoS2 nanozymes. Furthermore, we find that the MoS2 nanozymes play a cytoprotective role in cells and significantly improve the treatment outcomes in a hepatic fibrosis mouse model. These results demonstrate the ROS-scavenging capacity of a single-component MoS2 nanozyme-based cascade reaction system and reveal the in-depth mechanism, which may advance the development of nanozyme-based antioxidative agents.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr02366g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antioxidants ; Cascade chemical reactions ; Catalase ; Cytochromes ; Density functional theory ; Electron transfer ; Enzymes ; Fibrosis ; Glutathione ; Homeostasis ; Hydrogen peroxide ; Molybdenum disulfide ; Peroxidase ; Scavenging ; Superoxide dismutase</subject><ispartof>Nanoscale, 2021-08, Vol.13 (29), p.12613-12622</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c187t-fbc1da0330679b6cca29075417adbe608bbaa256c909f55b9c7a9612d63380103</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Zhang, Shitong</creatorcontrib><creatorcontrib>Yang, Zaixing</creatorcontrib><creatorcontrib>Wang, Zhuanhua</creatorcontrib><creatorcontrib>Tian, Xin</creatorcontrib><creatorcontrib>Zhou, Ruhong</creatorcontrib><title>Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy</title><title>Nanoscale</title><description>Cascade biocatalytic reactions involving multiple antioxidative enzymes are necessary in living cells to regulate cellular metabolism and redox homeostasis. Substantial efforts have been made to construct cascade reactions through engineered enzyme mimics to improve intracellular metabolic flux, especially under pathophysiological conditions. Here, we show that MoS2 nanozymes exhibit activities of four major cellular cascade antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Meanwhile, MoS2 nanozymes attenuate electron transfer in cytochrome c/H2O2 to ameliorate the inherent antioxidant defense system under stress conditions. Thus, MoS2 nanozymes function as a self-cascade platform to inhibit intracellular reactive oxygen species (ROS) production by modulating mitochondrial function and scavenging abundant ROS through their intrinsic antioxidant capacity. Density functional theory calculations reveal the underlying mechanisms of the intracellular environment-dependent catalase-like activity of MoS2 nanozymes. Furthermore, we find that the MoS2 nanozymes play a cytoprotective role in cells and significantly improve the treatment outcomes in a hepatic fibrosis mouse model. These results demonstrate the ROS-scavenging capacity of a single-component MoS2 nanozyme-based cascade reaction system and reveal the in-depth mechanism, which may advance the development of nanozyme-based antioxidative agents.</description><subject>Antioxidants</subject><subject>Cascade chemical reactions</subject><subject>Catalase</subject><subject>Cytochromes</subject><subject>Density functional theory</subject><subject>Electron transfer</subject><subject>Enzymes</subject><subject>Fibrosis</subject><subject>Glutathione</subject><subject>Homeostasis</subject><subject>Hydrogen peroxide</subject><subject>Molybdenum disulfide</subject><subject>Peroxidase</subject><subject>Scavenging</subject><subject>Superoxide dismutase</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdj01LAzEYhIMoWKsXf0HAi5fVN0mT3Ryl-AUVD9VzeZNNbMo2qckuqL_eLYoHTzMDD8MMIecMrhgIfd2ymIELpd4OyITDDCohan7459XsmJyUsgFQWigxIWbpOl9ZLBZbR5_SktOIMX19bl2hPmXqvA82uNjTEPuM1nXd0GGmGPuQPkKLo8QxtXTtdmOw1AeTUwmF9muXcfd5So48dsWd_eqUvN7dvswfqsXz_eP8ZlFZ1tR95Y1lLYIQoGptlLXINdRyxmpsjVPQGIPIpbIatJfSaFujVoy3SogGxvdTcvnTu8vpfXClX21D2e_F6NJQVlxKDlI2tR7Ri3_oJg05juv2lNQgoGHiGz4XZWA</recordid><startdate>20210807</startdate><enddate>20210807</enddate><creator>Zhang, Xinyu</creator><creator>Zhang, Shitong</creator><creator>Yang, Zaixing</creator><creator>Wang, Zhuanhua</creator><creator>Tian, Xin</creator><creator>Zhou, Ruhong</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20210807</creationdate><title>Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy</title><author>Zhang, Xinyu ; Zhang, Shitong ; Yang, Zaixing ; Wang, Zhuanhua ; Tian, Xin ; Zhou, Ruhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-fbc1da0330679b6cca29075417adbe608bbaa256c909f55b9c7a9612d63380103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antioxidants</topic><topic>Cascade chemical reactions</topic><topic>Catalase</topic><topic>Cytochromes</topic><topic>Density functional theory</topic><topic>Electron transfer</topic><topic>Enzymes</topic><topic>Fibrosis</topic><topic>Glutathione</topic><topic>Homeostasis</topic><topic>Hydrogen peroxide</topic><topic>Molybdenum disulfide</topic><topic>Peroxidase</topic><topic>Scavenging</topic><topic>Superoxide dismutase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Zhang, Shitong</creatorcontrib><creatorcontrib>Yang, Zaixing</creatorcontrib><creatorcontrib>Wang, Zhuanhua</creatorcontrib><creatorcontrib>Tian, Xin</creatorcontrib><creatorcontrib>Zhou, Ruhong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinyu</au><au>Zhang, Shitong</au><au>Yang, Zaixing</au><au>Wang, Zhuanhua</au><au>Tian, Xin</au><au>Zhou, Ruhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy</atitle><jtitle>Nanoscale</jtitle><date>2021-08-07</date><risdate>2021</risdate><volume>13</volume><issue>29</issue><spage>12613</spage><epage>12622</epage><pages>12613-12622</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Cascade biocatalytic reactions involving multiple antioxidative enzymes are necessary in living cells to regulate cellular metabolism and redox homeostasis. Substantial efforts have been made to construct cascade reactions through engineered enzyme mimics to improve intracellular metabolic flux, especially under pathophysiological conditions. Here, we show that MoS2 nanozymes exhibit activities of four major cellular cascade antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Meanwhile, MoS2 nanozymes attenuate electron transfer in cytochrome c/H2O2 to ameliorate the inherent antioxidant defense system under stress conditions. Thus, MoS2 nanozymes function as a self-cascade platform to inhibit intracellular reactive oxygen species (ROS) production by modulating mitochondrial function and scavenging abundant ROS through their intrinsic antioxidant capacity. Density functional theory calculations reveal the underlying mechanisms of the intracellular environment-dependent catalase-like activity of MoS2 nanozymes. Furthermore, we find that the MoS2 nanozymes play a cytoprotective role in cells and significantly improve the treatment outcomes in a hepatic fibrosis mouse model. These results demonstrate the ROS-scavenging capacity of a single-component MoS2 nanozyme-based cascade reaction system and reveal the in-depth mechanism, which may advance the development of nanozyme-based antioxidative agents.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nr02366g</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2021-08, Vol.13 (29), p.12613-12622 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2552055879 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Antioxidants Cascade chemical reactions Catalase Cytochromes Density functional theory Electron transfer Enzymes Fibrosis Glutathione Homeostasis Hydrogen peroxide Molybdenum disulfide Peroxidase Scavenging Superoxide dismutase |
title | Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-cascade%20MoS2%20nanozymes%20for%20efficient%20intracellular%20antioxidation%20and%20hepatic%20fibrosis%20therapy&rft.jtitle=Nanoscale&rft.au=Zhang,%20Xinyu&rft.date=2021-08-07&rft.volume=13&rft.issue=29&rft.spage=12613&rft.epage=12622&rft.pages=12613-12622&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr02366g&rft_dat=%3Cproquest%3E2552055879%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c187t-fbc1da0330679b6cca29075417adbe608bbaa256c909f55b9c7a9612d63380103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2555903081&rft_id=info:pmid/&rfr_iscdi=true |