Loading…

Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy

Cascade biocatalytic reactions involving multiple antioxidative enzymes are necessary in living cells to regulate cellular metabolism and redox homeostasis. Substantial efforts have been made to construct cascade reactions through engineered enzyme mimics to improve intracellular metabolic flux, esp...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2021-08, Vol.13 (29), p.12613-12622
Main Authors: Zhang, Xinyu, Zhang, Shitong, Yang, Zaixing, Wang, Zhuanhua, Tian, Xin, Zhou, Ruhong
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c187t-fbc1da0330679b6cca29075417adbe608bbaa256c909f55b9c7a9612d63380103
cites
container_end_page 12622
container_issue 29
container_start_page 12613
container_title Nanoscale
container_volume 13
creator Zhang, Xinyu
Zhang, Shitong
Yang, Zaixing
Wang, Zhuanhua
Tian, Xin
Zhou, Ruhong
description Cascade biocatalytic reactions involving multiple antioxidative enzymes are necessary in living cells to regulate cellular metabolism and redox homeostasis. Substantial efforts have been made to construct cascade reactions through engineered enzyme mimics to improve intracellular metabolic flux, especially under pathophysiological conditions. Here, we show that MoS2 nanozymes exhibit activities of four major cellular cascade antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Meanwhile, MoS2 nanozymes attenuate electron transfer in cytochrome c/H2O2 to ameliorate the inherent antioxidant defense system under stress conditions. Thus, MoS2 nanozymes function as a self-cascade platform to inhibit intracellular reactive oxygen species (ROS) production by modulating mitochondrial function and scavenging abundant ROS through their intrinsic antioxidant capacity. Density functional theory calculations reveal the underlying mechanisms of the intracellular environment-dependent catalase-like activity of MoS2 nanozymes. Furthermore, we find that the MoS2 nanozymes play a cytoprotective role in cells and significantly improve the treatment outcomes in a hepatic fibrosis mouse model. These results demonstrate the ROS-scavenging capacity of a single-component MoS2 nanozyme-based cascade reaction system and reveal the in-depth mechanism, which may advance the development of nanozyme-based antioxidative agents.
doi_str_mv 10.1039/d1nr02366g
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2552055879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552055879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-fbc1da0330679b6cca29075417adbe608bbaa256c909f55b9c7a9612d63380103</originalsourceid><addsrcrecordid>eNpdj01LAzEYhIMoWKsXf0HAi5fVN0mT3Ryl-AUVD9VzeZNNbMo2qckuqL_eLYoHTzMDD8MMIecMrhgIfd2ymIELpd4OyITDDCohan7459XsmJyUsgFQWigxIWbpOl9ZLBZbR5_SktOIMX19bl2hPmXqvA82uNjTEPuM1nXd0GGmGPuQPkKLo8QxtXTtdmOw1AeTUwmF9muXcfd5So48dsWd_eqUvN7dvswfqsXz_eP8ZlFZ1tR95Y1lLYIQoGptlLXINdRyxmpsjVPQGIPIpbIatJfSaFujVoy3SogGxvdTcvnTu8vpfXClX21D2e_F6NJQVlxKDlI2tR7Ri3_oJg05juv2lNQgoGHiGz4XZWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555903081</pqid></control><display><type>article</type><title>Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Zhang, Xinyu ; Zhang, Shitong ; Yang, Zaixing ; Wang, Zhuanhua ; Tian, Xin ; Zhou, Ruhong</creator><creatorcontrib>Zhang, Xinyu ; Zhang, Shitong ; Yang, Zaixing ; Wang, Zhuanhua ; Tian, Xin ; Zhou, Ruhong</creatorcontrib><description>Cascade biocatalytic reactions involving multiple antioxidative enzymes are necessary in living cells to regulate cellular metabolism and redox homeostasis. Substantial efforts have been made to construct cascade reactions through engineered enzyme mimics to improve intracellular metabolic flux, especially under pathophysiological conditions. Here, we show that MoS2 nanozymes exhibit activities of four major cellular cascade antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Meanwhile, MoS2 nanozymes attenuate electron transfer in cytochrome c/H2O2 to ameliorate the inherent antioxidant defense system under stress conditions. Thus, MoS2 nanozymes function as a self-cascade platform to inhibit intracellular reactive oxygen species (ROS) production by modulating mitochondrial function and scavenging abundant ROS through their intrinsic antioxidant capacity. Density functional theory calculations reveal the underlying mechanisms of the intracellular environment-dependent catalase-like activity of MoS2 nanozymes. Furthermore, we find that the MoS2 nanozymes play a cytoprotective role in cells and significantly improve the treatment outcomes in a hepatic fibrosis mouse model. These results demonstrate the ROS-scavenging capacity of a single-component MoS2 nanozyme-based cascade reaction system and reveal the in-depth mechanism, which may advance the development of nanozyme-based antioxidative agents.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr02366g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antioxidants ; Cascade chemical reactions ; Catalase ; Cytochromes ; Density functional theory ; Electron transfer ; Enzymes ; Fibrosis ; Glutathione ; Homeostasis ; Hydrogen peroxide ; Molybdenum disulfide ; Peroxidase ; Scavenging ; Superoxide dismutase</subject><ispartof>Nanoscale, 2021-08, Vol.13 (29), p.12613-12622</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c187t-fbc1da0330679b6cca29075417adbe608bbaa256c909f55b9c7a9612d63380103</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Zhang, Shitong</creatorcontrib><creatorcontrib>Yang, Zaixing</creatorcontrib><creatorcontrib>Wang, Zhuanhua</creatorcontrib><creatorcontrib>Tian, Xin</creatorcontrib><creatorcontrib>Zhou, Ruhong</creatorcontrib><title>Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy</title><title>Nanoscale</title><description>Cascade biocatalytic reactions involving multiple antioxidative enzymes are necessary in living cells to regulate cellular metabolism and redox homeostasis. Substantial efforts have been made to construct cascade reactions through engineered enzyme mimics to improve intracellular metabolic flux, especially under pathophysiological conditions. Here, we show that MoS2 nanozymes exhibit activities of four major cellular cascade antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Meanwhile, MoS2 nanozymes attenuate electron transfer in cytochrome c/H2O2 to ameliorate the inherent antioxidant defense system under stress conditions. Thus, MoS2 nanozymes function as a self-cascade platform to inhibit intracellular reactive oxygen species (ROS) production by modulating mitochondrial function and scavenging abundant ROS through their intrinsic antioxidant capacity. Density functional theory calculations reveal the underlying mechanisms of the intracellular environment-dependent catalase-like activity of MoS2 nanozymes. Furthermore, we find that the MoS2 nanozymes play a cytoprotective role in cells and significantly improve the treatment outcomes in a hepatic fibrosis mouse model. These results demonstrate the ROS-scavenging capacity of a single-component MoS2 nanozyme-based cascade reaction system and reveal the in-depth mechanism, which may advance the development of nanozyme-based antioxidative agents.</description><subject>Antioxidants</subject><subject>Cascade chemical reactions</subject><subject>Catalase</subject><subject>Cytochromes</subject><subject>Density functional theory</subject><subject>Electron transfer</subject><subject>Enzymes</subject><subject>Fibrosis</subject><subject>Glutathione</subject><subject>Homeostasis</subject><subject>Hydrogen peroxide</subject><subject>Molybdenum disulfide</subject><subject>Peroxidase</subject><subject>Scavenging</subject><subject>Superoxide dismutase</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdj01LAzEYhIMoWKsXf0HAi5fVN0mT3Ryl-AUVD9VzeZNNbMo2qckuqL_eLYoHTzMDD8MMIecMrhgIfd2ymIELpd4OyITDDCohan7459XsmJyUsgFQWigxIWbpOl9ZLBZbR5_SktOIMX19bl2hPmXqvA82uNjTEPuM1nXd0GGmGPuQPkKLo8QxtXTtdmOw1AeTUwmF9muXcfd5So48dsWd_eqUvN7dvswfqsXz_eP8ZlFZ1tR95Y1lLYIQoGptlLXINdRyxmpsjVPQGIPIpbIatJfSaFujVoy3SogGxvdTcvnTu8vpfXClX21D2e_F6NJQVlxKDlI2tR7Ri3_oJg05juv2lNQgoGHiGz4XZWA</recordid><startdate>20210807</startdate><enddate>20210807</enddate><creator>Zhang, Xinyu</creator><creator>Zhang, Shitong</creator><creator>Yang, Zaixing</creator><creator>Wang, Zhuanhua</creator><creator>Tian, Xin</creator><creator>Zhou, Ruhong</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20210807</creationdate><title>Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy</title><author>Zhang, Xinyu ; Zhang, Shitong ; Yang, Zaixing ; Wang, Zhuanhua ; Tian, Xin ; Zhou, Ruhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-fbc1da0330679b6cca29075417adbe608bbaa256c909f55b9c7a9612d63380103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antioxidants</topic><topic>Cascade chemical reactions</topic><topic>Catalase</topic><topic>Cytochromes</topic><topic>Density functional theory</topic><topic>Electron transfer</topic><topic>Enzymes</topic><topic>Fibrosis</topic><topic>Glutathione</topic><topic>Homeostasis</topic><topic>Hydrogen peroxide</topic><topic>Molybdenum disulfide</topic><topic>Peroxidase</topic><topic>Scavenging</topic><topic>Superoxide dismutase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Zhang, Shitong</creatorcontrib><creatorcontrib>Yang, Zaixing</creatorcontrib><creatorcontrib>Wang, Zhuanhua</creatorcontrib><creatorcontrib>Tian, Xin</creatorcontrib><creatorcontrib>Zhou, Ruhong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinyu</au><au>Zhang, Shitong</au><au>Yang, Zaixing</au><au>Wang, Zhuanhua</au><au>Tian, Xin</au><au>Zhou, Ruhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy</atitle><jtitle>Nanoscale</jtitle><date>2021-08-07</date><risdate>2021</risdate><volume>13</volume><issue>29</issue><spage>12613</spage><epage>12622</epage><pages>12613-12622</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Cascade biocatalytic reactions involving multiple antioxidative enzymes are necessary in living cells to regulate cellular metabolism and redox homeostasis. Substantial efforts have been made to construct cascade reactions through engineered enzyme mimics to improve intracellular metabolic flux, especially under pathophysiological conditions. Here, we show that MoS2 nanozymes exhibit activities of four major cellular cascade antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Meanwhile, MoS2 nanozymes attenuate electron transfer in cytochrome c/H2O2 to ameliorate the inherent antioxidant defense system under stress conditions. Thus, MoS2 nanozymes function as a self-cascade platform to inhibit intracellular reactive oxygen species (ROS) production by modulating mitochondrial function and scavenging abundant ROS through their intrinsic antioxidant capacity. Density functional theory calculations reveal the underlying mechanisms of the intracellular environment-dependent catalase-like activity of MoS2 nanozymes. Furthermore, we find that the MoS2 nanozymes play a cytoprotective role in cells and significantly improve the treatment outcomes in a hepatic fibrosis mouse model. These results demonstrate the ROS-scavenging capacity of a single-component MoS2 nanozyme-based cascade reaction system and reveal the in-depth mechanism, which may advance the development of nanozyme-based antioxidative agents.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nr02366g</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2021-08, Vol.13 (29), p.12613-12622
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2552055879
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Antioxidants
Cascade chemical reactions
Catalase
Cytochromes
Density functional theory
Electron transfer
Enzymes
Fibrosis
Glutathione
Homeostasis
Hydrogen peroxide
Molybdenum disulfide
Peroxidase
Scavenging
Superoxide dismutase
title Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-cascade%20MoS2%20nanozymes%20for%20efficient%20intracellular%20antioxidation%20and%20hepatic%20fibrosis%20therapy&rft.jtitle=Nanoscale&rft.au=Zhang,%20Xinyu&rft.date=2021-08-07&rft.volume=13&rft.issue=29&rft.spage=12613&rft.epage=12622&rft.pages=12613-12622&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr02366g&rft_dat=%3Cproquest%3E2552055879%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c187t-fbc1da0330679b6cca29075417adbe608bbaa256c909f55b9c7a9612d63380103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2555903081&rft_id=info:pmid/&rfr_iscdi=true