Loading…
Synthesis of POMOFs with 8-fold helix and its composite with carboxyl functionalized SWCNTs for the voltammetric determination of dopamine
Although many satisfactory studies have been developed for biomolecule detection, the complexity of biofluids still poses a major challenge to improve the performance of nanomaterials as electrochemical sensors. Herein, unprecedented polyoxometalate-based metal-organic frameworks (POMOFs) with 8-fol...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2021-09, Vol.413 (21), p.5309-5320 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although many satisfactory studies have been developed for biomolecule detection, the complexity of biofluids still poses a major challenge to improve the performance of nanomaterials as electrochemical sensors. Herein, unprecedented polyoxometalate-based metal-organic frameworks (POMOFs) with 8-fold meso-helical feature, [Ag
5
(trz)
4
]
2
[PMo
12
O
40
] (PAZ), were synthesized and explored as electrochemical sensors to detect dopamine (DA). To improve the conductivity of PAZ and the binding ability with single-walled carbon nanotubes (SWCNTs), the nanocomposite of carboxyl functionalized SWCNTs (SWCNTs-COOH) with nano-PAZ (NPAZ), NPAZ@SWCNTs-COOH, was fabricated, and transmission electron microscopy (TEM) shows that NPAZ can interact stably and uniformly with SWCNTs-COOH, owing to more defect sites on the surface of SWCNTs-COOH. The electrochemical result of NPAZ@SWCNTs-COOH/GCE towards detecting DA shows that the linear range was from 0.05 to 100 μM with a detection limit (LOD) of 8.6 nM (S/N = 3).
Graphical abstract
A new electrochemical biosensing platform by combining 8-fold helical POMOFs with SWCNTs-COOH was developed for enhancing detection of dopamine for the first time, exhibiting the lowest detection limit to date. |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-021-03504-3 |