Loading…

Theaflavin Promotes Mitochondrial Abundance and Glucose Absorption in Myotubes by Activating the CaMKK2-AMPK Signal Axis via Calcium-Ion Influx

Drinking tea has been proven to have a positive biological effect in regulating human glucose and lipid metabolism and preventing type 2 diabetes (T2D). Skeletal muscle (SkM) is responsible for 70% of the sugar metabolism in the human body, and its dysfunction is an important factor leading to the d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2021-07, Vol.69 (29), p.8144-8159
Main Authors: Qu, Zhihao, Liu, Ailing, Liu, Changwei, Tang, Quanquan, Zhan, Li, Xiao, Wenjun, Huang, Jianan, Liu, Zhonghua, Zhang, Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drinking tea has been proven to have a positive biological effect in regulating human glucose and lipid metabolism and preventing type 2 diabetes (T2D). Skeletal muscle (SkM) is responsible for 70% of the sugar metabolism in the human body, and its dysfunction is an important factor leading to the development of obesity, T2D, and muscle diseases. As one of the four known theaflavins (TFs) in black tea, the biological role of theaflavin (TF1) in regulating SkM metabolism has not been reported. In this study, mature myotubes induced by C2C12 cells in vitro were used as models. The results showed that TF1 (20 μM) promoted mitochondrial abundance and glucose absorption in myotubes by activating the CaMKK2-AMPK signaling axis via Ca2+ influx. Moreover, it promoted the expression of slow muscle fiber marker genes (Myh7, Myl2, Tnnt1, and Tnnc1) and PGC-1α/SIRT1, as well as enhanced the oxidative phosphorylation capacity of myotubes. In conclusion, this study preliminarily clarified the potential role of TF1 in regulating SkM glucose absorption as well as promoting SkM mitochondrial biosynthesis and slow muscle fiber formation. It has potential research and application values for the prevention/alleviation of SkM-related T2D and Ca2+-related skeletal muscle diseases through diet.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.1c02892