Loading…
Spatio-temporal controlled filamentation using higher order Bessel-Gaussian beams integrated in time
We demonstrate a new method for a systematic, dynamic, high-speed, spatio-temporal control of femtosecond light filamentation in BK7 as a particular example of nonlinear medium. This method is based on using coherent conjugate asymmetric Bessel-Gaussian beams to control the far-field intensity distr...
Saved in:
Published in: | Optics express 2021-06, Vol.29 (13), p.19362-19372 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate a new method for a systematic, dynamic, high-speed, spatio-temporal control of femtosecond light filamentation in BK7 as a particular example of nonlinear medium. This method is based on using coherent conjugate asymmetric Bessel-Gaussian beams to control the far-field intensity distribution and in turn control the filamentation location. Such spatio-temporal control allows every femtosecond pulse to have a unique intensity distribution that results in the generation of structured filamentation patterns on demand. The switching speed of this technique is dependent on the rise time of the acousto-optic deflector, which can operate in the MHz range while having the ability to handle high peak power pulses that are needed for nonlinear interactions. The proposed and demonstrated spatio-temporal control of structured filaments can enable generation of large filament arrays, opto-mechanical manipulations of water droplets for fog clearing, as well as engineered radiofrequency plasma antennas. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.428742 |