Loading…
Factors determining the serum 25‐hydroxyvitamin D response to vitamin D supplementation: Data mining approach
Vitamin D supplementation has been shown to prevent vitamin D deficiency, but various factors can affect the response to supplementation. Data mining is a statistical method for pulling out information from large databases. We aimed to evaluate the factors influencing serum 25‐hydroxyvitamin D level...
Saved in:
Published in: | BioFactors (Oxford) 2021-09, Vol.47 (5), p.828-836 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vitamin D supplementation has been shown to prevent vitamin D deficiency, but various factors can affect the response to supplementation. Data mining is a statistical method for pulling out information from large databases. We aimed to evaluate the factors influencing serum 25‐hydroxyvitamin D levels in response to supplementation of vitamin D using a random forest (RF) model. Data were extracted from the survey of ultraviolet intake by nutritional approach study. Vitamin D levels were measured at baseline and at the end of study to evaluate the responsiveness. We examined the relationship between 76 potential influencing factors on vitamin D response using RF. We found several features that were highly correlated to the serum vitamin D response to supplementation by RF including anthropometric factors (body mass index [BMI], free fat mass [FFM], fat percentage, waist‐to‐hip ratio [WHR]), liver function tests (serum gamma‐glutamyl transferase [GGT], total bilirubin, total protein), hematological parameters (mean corpuscular volume [MCV], mean corpuscular hemoglobin concentration [MCHC], hematocrit), and measurement of insulin sensitivity (homeostatic model assessment of insulin resistance). BMI, total bilirubin, FFM, and GGT were found to have a positive relationship and homeostatic model assessment for insulin resistance, MCV, MCHC, fat percentage, total protein, and WHR were found to have a negative correlation to vitamin D concentration in response to supplementation. The accuracy of RF in predicting the response was 93% compared to logistic regression, for which the accuracy was 40%, in the evaluation of the correlation of the components of the data set to serum vitamin D. |
---|---|
ISSN: | 0951-6433 1872-8081 |
DOI: | 10.1002/biof.1770 |