Loading…
Ultra-high sensitivity SPR temperature sensor based on a helical-core fiber
A novel compact ultra-high sensitivity optical fiber temperature sensor based on surface plasmon resonance (SPR) is proposed and demonstrated. The sensor is fabricated by employing a helical-core fiber (HCF), which is polished as a D-type fiber on the helical-core region and coated with a layer of A...
Saved in:
Published in: | Optics express 2021-07, Vol.29 (14), p.22417-22426 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel compact ultra-high sensitivity optical fiber temperature sensor based on surface plasmon resonance (SPR) is proposed and demonstrated. The sensor is fabricated by employing a helical-core fiber (HCF), which is polished as a D-type fiber on the helical-core region and coated with a layer of Au-film and polydimethylsiloxane (PDMS). The theoretical and experimental results show that the resonant wavelength and sensitivity of the proposed sensor can be effectively adjusted by changing the twisting pitch of HCF. Due to the high refractive index sensitivity of the sensor and the high thermo-optic coefficient of PDMS, the maximum sensitivity can reach -19.56 nm/°C at room temperature when the twist pitch of HCF is 2.1 mm. It is worth noting that the sensitivity can be further improved by using a shorter pitch of HCF. The proposed SPR temperature sensor has adjustable sensitivity, is easy to realize distributed sensing, and has potential application prospects in biomedical, healthcare, and other fields. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.428199 |