Loading…

G‑Quadruplex-Induced Liquid–Liquid Phase Separation in Biomimetic Protocells

Biomolecular condensates comprised of specific proteins and nucleic acids are now recognized as one of the key organizing mechanisms in eukaryotic cells. However, the specific roles played by the nucleic acid secondary structure and sequence in biomolecular phase separation are still not clear. Here...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2021-07, Vol.143 (29), p.11036-11043
Main Authors: Liu, Xuejiao, Xiong, Yansong, Zhang, Chunjuan, Lai, Rongji, Liu, Hui, Peng, Ruizi, Fu, Ting, Liu, Qiaoling, Fang, Xiaohong, Mann, Stephen, Tan, Weihong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biomolecular condensates comprised of specific proteins and nucleic acids are now recognized as one of the key organizing mechanisms in eukaryotic cells. However, the specific roles played by the nucleic acid secondary structure and sequence in biomolecular phase separation are still not clear. Here, utilizing giant membrane vesicles (GMVs) as a protocell model, we found that single-stranded DNA (ssDNA) with a parallel G-quadruplex structure could functionally cooperate with a G-quadruplex-binding protein to form speckle-like puncta inside the GMVs. The clustering behavior is dependent on the structural diversity of G-quadruplexes, and the reversible clustering behavior implicated a new pathway in dynamically regulating the formation of biomolecular condensates. This finding represents a potential link between G-quadruplex-binding proteins and the resulting G-quadruplex-mediated biomolecular phase separation, which would gain insight into a wide range of biological processes associated with nucleic acid-modulated phase separation inside living cells.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.1c03627